08.10.2024

Тесла лампочки: Купить Лампочка LATITUDE Tesla Gem от RELOFT

Тесла шоу в Екатеринбурге, tesla show на детский праздник — цена, видео, фото

[wr_row width=”boxed” background=”none” solid_color_value=”#FFFFFF” solid_color_color=”#ffffff” gradient_color=”0% #FFFFFF,100% #000000″ gradient_direction=”vertical” repeat=”full” img_repeat=”full” autoplay=”yes” position=”center center” paralax=”no” border_width_value_=”0″ border_style=”solid” border_color=”#000″ div_padding_top=”10″ div_padding_bottom=”10″ div_padding_right=”10″ div_padding_left=”10″ ][wr_column span=”span12″ ][wr_text el_title=” Описание” text_margin_top=”0″ text_margin_bottom=”0″ enable_dropcap=”no” appearing_animation=”0″ disabled_el=”no” ]Электрические молнии Тесла! Впервые в Екатеринбурге! Катушка тесла (трансформатор Тесла) – это изобретение выдающегося физика из США Николы Тесла. Катушка вырабатывает напряжение высокой частоты и генерирует настоящие молнии. При этом выглядит она очень зрелищно и полностью безопасна для взрослых и детей![/wr_text][wr_divider div_margin_top=”0″ div_margin_left=”0″ div_margin_bottom=”25″ div_margin_right=”0″ div_border_width=”2″ div_border_style=”solid” div_border_color=”#E0DEDE” divider_width=”100″ disabled_el=”no” ][/wr_divider][wr_text el_title=”описание с ценой ” text_margin_top=”0″ text_margin_left=”0″ text_margin_bottom=”0″ text_margin_right=”0″ enable_dropcap=”no” appearing_animation=”0″ disabled_el=”no” ]

15  000 р.

ТЕСЛА-ШОУ (ВЗРОСЛОЕ)
Длительность: 8:20 минут
Количество человек: 1

[/wr_text][wr_video el_title=”видео” video_source_link_vimeo=”https://vimeo.com/178309000″ video_vimeo_dimension_width=”960″ video_vimeo_dimension_height=”400″ video_vimeo_autoplay=”false” video_vimeo_loop=”false” video_vimeo_color=”#54BBFC” video_alignment=”center” video_margin_top=”10″ video_margin_bottom=”10″ appearing_animation=”0″ disabled_el=”no” video_sources=”vimeo” ][/wr_video][/wr_column][/wr_row][wr_row width=”boxed” background=”none” solid_color_value=”#FFFFFF” solid_color_color=”#ffffff” gradient_color=”0% #FFFFFF,100% #000000″ gradient_direction=”vertical” repeat=”full” img_repeat=”full” autoplay=”yes” position=”center center” paralax=”no” border_width_value_=”0″ border_style=”solid” border_color=”#000″ div_padding_top=”10″ div_padding_bottom=”10″ div_padding_right=”10″ div_padding_left=”10″ ][wr_column span=”span6″ ][wr_text text_margin_top=”0″ text_margin_bottom=”0″ enable_dropcap=”no” appearing_animation=”0″ disabled_el=”no” ]

[/wr_text][/wr_column][wr_column span=”span6″ ][wr_text el_title=”В ШОУ ИСПОЛЬЗУЕТСЯ copy” text_margin_top=”0″ text_margin_bottom=”0″ enable_dropcap=”no” appearing_animation=”0″ disabled_el=”no” ]

В ШОУ ИСПОЛЬЗУЕТСЯ:

• большая катушка Тесла

• малая катушка

• плазменные шары

• световые газовые палочки

• световые очки, корона, сердце

• перчатка повелителя молний

•  джедайский меч

•  воспламеняющийся порошок

•  бенгальский огонь

• газовая световая пружина

•  кольцевидные лампы

•  разноцветные лампочки

•  газовые шары

[/wr_text][/wr_column][/wr_row][wr_row width=”boxed” background=”none” solid_color_value=”#FFFFFF” solid_color_color=”#ffffff” gradient_color=”0% #FFFFFF,100% #000000″ gradient_direction=”vertical” repeat=”full” img_repeat=”full” autoplay=”yes” position=”center center” paralax=”no” border_width_value_=”0″ border_style=”solid” border_color=”#000″ div_padding_top=”10″ div_padding_bottom=”10″ div_padding_right=”10″ div_padding_left=”10″ ][wr_column span=”span12″ ][wr_divider div_margin_top=”0″ div_margin_left=”0″ div_margin_bottom=”25″ div_margin_right=”0″ div_border_width=”2″ div_border_style=”solid” div_border_color=”#E0DEDE” divider_width=”100″ disabled_el=”no” ][/wr_divider][wr_text #_EDITTED el_title=”описание с ценой copy” text_margin_top=”0″ text_margin_left=”0″ text_margin_bottom=”0″ text_margin_right=”0″ enable_dropcap=”no” appearing_animation=”0″ disabled_el=”no” ]

12  000 р.

ТЕСЛА-ШОУ (ДЕТСКОЕ)
Длительность: 8:20 минут
Количество человек: 1

[/wr_text][wr_video el_title=”видео” video_source_link_vimeo=”https://vimeo.com/150787486″ video_vimeo_dimension_width=”960″ video_vimeo_dimension_height=”400″ video_vimeo_autoplay=”false” video_vimeo_loop=”false” video_vimeo_color=”#54BBFC” video_alignment=”center” video_margin_top=”25″ video_margin_bottom=”10″ appearing_animation=”0″ disabled_el=”no” video_sources=”vimeo” ][/wr_video][wr_video el_title=”видео2″ video_source_link_vimeo=”https://vimeo.com/157780319″ video_vimeo_dimension_width=”960″ video_vimeo_dimension_height=”400″ video_vimeo_autoplay=”false” video_vimeo_loop=”false” video_vimeo_color=”#54BBFC” video_alignment=”center” video_margin_top=”10″ video_margin_bottom=”10″ appearing_animation=”0″ disabled_el=”no” video_sources=”vimeo” ][/wr_video][wr_divider div_margin_top=”0″ div_margin_left=”0″ div_margin_bottom=”25″ div_margin_right=”0″ div_border_width=”2″ div_border_style=”solid” div_border_color=”#E0DEDE” divider_width=”100″ disabled_el=”no” ][/wr_divider][/wr_column][/wr_row][wr_row width=”boxed” background=”none” solid_color_value=”#FFFFFF” solid_color_color=”#ffffff” gradient_color=”0% #FFFFFF,100% #000000″ gradient_direction=”vertical” repeat=”full” img_repeat=”full” autoplay=”yes” position=”center center” paralax=”no” border_width_value_=”0″ border_style=”solid” border_color=”#000″ div_padding_top=”10″ div_padding_bottom=”10″ div_padding_right=”10″ div_padding_left=”10″ ][wr_column span=”span6″ ][wr_text text_margin_top=”0″ text_margin_bottom=”0″ enable_dropcap=”no” appearing_animation=”0″ disabled_el=”no” ]

[/wr_text][/wr_column][wr_column span=”span6″ ][wr_text el_title=”В ШОУ ИСПОЛЬЗУЕТСЯ ” text_margin_top=”0″ text_margin_bottom=”0″ enable_dropcap=”no” appearing_animation=”0″ disabled_el=”no” ]

В ШОУ ИСПОЛЬЗУЕТСЯ:

• большая катушка Тесла

• малая катушка

• плазменные шары

• световые газовые палочки

• световые очки, корона, сердце

• перчатка повелителя молний

•  джедайский меч

•  воспламеняющийся порошок

•  бенгальский огонь

• газовая световая пружина

•  кольцевидные лампы

•  разноцветные лампочки

•  газовые шары

[/wr_text][/wr_column][/wr_row][wr_row width=”boxed” background=”none” solid_color_value=”#FFFFFF” solid_color_color=”#ffffff” gradient_color=”0% #FFFFFF,100% #000000″ gradient_direction=”vertical” repeat=”full” img_repeat=”full” autoplay=”yes” position=”center center” paralax=”no” border_width_value_=”0″ border_style=”solid” border_color=”#000″ div_padding_top=”10″ div_padding_bottom=”10″ div_padding_right=”10″ div_padding_left=”10″ ][wr_column span=”span12″ ][wr_divider div_margin_top=”0″ div_margin_left=”0″ div_margin_bottom=”25″ div_margin_right=”0″ div_border_width=”2″ div_border_style=”solid” div_border_color=”#E0DEDE” divider_width=”100″ disabled_el=”no” ][/wr_divider][wr_text el_title=”ИНТЕРАКТИВ” text_margin_top=”0″ text_margin_bottom=”0″ enable_dropcap=”no” appearing_animation=”0″ disabled_el=”no” ]

 

ШОУ С ДЕТЬМИ

 

Для тех детей, которых сложно удивить – наше шоу с электрическими молниями подойдет, как нельзя лучше. Мы не только развлечем, но и расскажем ребятам про свойства электричества, продемонстрируем чудесные свойства одного из самых известных изобретений Николы Тесла. В финале шоу мы обязательно делаем блок, где можно все потрогать и попробовать под руководством артиста-аниматора. Новые ощущения гарантированы! 

 



 

ИНТЕРАКТИВ

 

После демонстрации возможностей ТЕСЛА электричества, ваши гости могут САМИ попробовать всю силу тока, излучаемую младшей (безопасной даже для детей) Тесла катушкой, которая называется “Качер”. Лампочки, плазменные шары, неоновые палочки будут чудесным образом загораться в ваших руках без проводов. Фантастика? Нет, просто наука! Гостям выдается специальная кованая перчатка “повелителя молний”, в которой вы можете в буквальном смысле прикоснуться к настоящей МОЛНИИ!

 



 

ТЕСЛА-ШОУ В ТЕМНОТЕ

 

Красивые плазменные аксессуары светятся под воздействием электрического поля катушки тесла. После шоу гости имеют возможность сделать несколько фотографий с такими световыми аксессуарами. Свечение происходит без батареек и проводов – никаких чудес, только наука!

 



Электричество без проводов — Энергетика и промышленность России — № 3 (31) март 2003 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 3 (31) март 2003 года

Биография американского изобретателя, серба по происхождению, Николы Теслы достаточно известна, и мы на ней останавливаться не будем. Но сразу уточним: прежде чем продемонстрировать свой уникальный эксперимент, Тесла, сначала в 1892 году в Лондоне, а через год в Филадельфии, в присутствии специалистов продемонстрировал возможность передачи электрической энергии по одному проводу, не используя при этом заземления второго полюса источника энергии. И тогда же у него возникла идея использовать в качестве этого единственного провода… Землю!

И в этом же году на съезде ассоциации электрического освещения в Сант-Льюисе он продемонстрировал электрические лампы, горящие без подводящих проводов, и работающий без подключения к электрической сети электромотор. Эту необычную экспозицию он прокомментировал следующим образом:

«Несколько слов об идее, постоянно занимающей мои мысли и касающейся всех нас. Я имею в виду передачу сигналов, а также и энергии на любое расстояние без проводов. Мы уже знаем, что электрические колебания могут передаваться по единственному проводнику. Почему же не воспользоваться для этой цели Землей? Если мы сможем установить период колебаний электрического заряда Земли при его возмущении, связанном с действием противоположно заряженной цепи, это будет фактом чрезвычайной важности, который послужит на благо всего человечества».

Увидя столь эффектную демонстрацию, такие известные олигархи, как Дж. Вестингауз и Дж. П. Морган, вложили в это перспективное дело свыше миллиона долларов, купив у Теслы его патенты (громадные, кстати, по тем временам деньги!). На эти средства в конце 90-х годов XIX века Тесла сооружает в Колорадо-Спрингс свою уникальную лабораторию.

Подробные сведения об экспериментах в лаборатории Теслы изложены в книге его биографа Джона О’Нейла «Электрический Прометей» (в нашей стране ее перевод был опубликован в журнале «Изобретатель и рационализатор» №4-11 за 1979 год). Приведем здесь лишь краткую выдержку из нее, чтобы не ссылаться на более поздние перепечатки:

«В Колорадо-Спрингс Тесла провел первые испытания беспроводной передачи электроэнергии. Он смог питать током, извлекаемым из Земли во время работы гигантского вибратора, 200 электрических лампочек накаливания, расположенных на расстоянии 42 километров от его лаборатории. Мощность каждой составляла 50 ватт, так что суммарный расход энергии составлял 10 кВт, или 13 л.с. Тесла был убежден, что с помощью более мощного вибратора он смог бы зажечь дюжину электрических гирлянд по 200 лампочек в каждой, разбросанных по всему земному шару».

Самого же Теслу настолько вдохновили успехи этих экспериментов, что он заявил в широкой печати, что намерен осветить Всемирную промышленную выставку в Париже, которую предполагалось провести в 1903 году, энергией электростанции, расположенной на Ниагарском водопаде и переданной в Париж без проводов.

Известно по многочисленным фотографиям и описаниям очевидцев и помощников изобретателя, что представлял собой генератор энергии, передаваемой на 42 километра без проводов (правда, это чисто журналистский термин: один провод, в качестве которого выступала Земля, в этой цепи присутствует, и об этом прямо говорят и сам Тесла, и его биограф).

То, что Тесла называл вибратором, было гигантским трансформатором его системы, имевшим первичную обмотку из нескольких витков толстого провода, намотанных на ограде диаметром 25 метров, и размещенную внутри нее многовитковую однослойную вторичную обмотку на цилиндре из диэлектрика. Первичная обмотка вместе с конденсатором, индукционной катушкой и искровым промежутком образовывала колебательный контур-преобразователь частоты.

Над трансформатором, располагавшимся в центре лаборатории, возвышалась деревянная башня высотой 60 метров, увенчанная большим медным шаром. Один конец вторичной обмотки трансформатора соединялся с этим шаром, другой — заземлялся. Все устройство питалось от отдельной динамо-машины мощностью 300 л.с. В нем возбуждались электромагнитные колебания частотой 150 килогерц (длина волны 2000 метров). Рабочее напряжение в высоковольтной цепи составляло 30 000 В, а резонирующий потенциал шара достигал 100 000 000 В, порождая искусственные молнии длиной в десятки метров!

Вот как объясняет работу вибратора Теслы его биограф:

«В сущности, Тесла «накачивал» в Землю и извлекал оттуда поток электронов. Частота накачки составляла 150 кГц. Распространяясь концентрическими кругами все дальше от Колорадо-Спрингс, электрические волны сходились затем в диаметрально противоположной точке Земли. Там вздымались и опадали волны большой амплитуды в унисон с поднятыми в Колорадо. Опадая, такая волна посылала электрическое эхо обратно в Колорадо, где электрический вибратор усиливал волну, и она мчалась обратно.

Если привести всю Землю в состояние электрической вибрации, то в каждой точке ее поверхности мы будем обеспечены энергией. Ее можно будет улавливать из мечущихся между электрическими полюсами волн простыми устройствами наподобие колебательных контуров в радиоприемниках, только заземленными и снабженными небольшими антеннами высотой с сельский коттедж. Эта энергия будет обогревать дома и освещать их с помощью трубчатых ламп Теслы, не требующих проводов. Для электромоторов переменного тока понадобились бы только преобразователи частоты». Сведения об экспериментах Теслы по передаче электроэнергии без проводов вдохновили и других исследователей на работы в этой области. Сообщения об аналогичных экспериментах часто появлялись в печати в начале прошлого века. Стоит привести в связи с этим выдержку из статьи A.M. Горького «Беседы о ремесле», опубликованной в 1930 году:

«В текущем году Маркони передал по воздуху электроток из Генуи в Австралию и зажег там электрические лампы на выставке в Сиднее. Это же было сделано 27 лет тому назад у нас, в России, литератором и ученым М.М. Филипповым, который несколько лет работал над передачей электротока по воздуху и в конце концов зажег из Петербурга люстру в Царском Селе (то есть на расстоянии 27 километров. -В.П.). Тогда на этот факт не было обращено должного внимания, но Филиппова через несколько дней нашли мертвым в своей квартире, а аппараты и бумаги его конфисковала полиция».

Эксперименты Теслы произвели большое впечатление и на другого литератора — Алексея Толстого, бывшего инженером по образованию. А когда Тесла, а затем и Маркони сообщили в печати, что их аппараты принимают странные сигналы внеземного, по-видимому, марсианского происхождения, это вдохновило писателя на написание фантастического романа «Аэлита». В романе марсиане пользуются изобретением Теслы и без проводов передают энергию от расположенных на полюсах Марса электростанций в любую точку планеты. Эта энергия приводит в действие двигатели летающих судов и другие механизмы.

Однако построить свою «мировую систему» для обеспечения электроэнергией населения земного шара без использования проводов Тесле не удалось. Как только в 1900 году он начал возводить на острове Лонг-Айленд под Нью-Йорком научно-исследовательскую лабораторию-городок на 2000 сотрудников и громадную металлическую башню с гигантской медной тарелкой на верхушке, сспохватились и «проводные» электрические олигархи: ведь повсеместное внедрение системы Теслы грозило им разорением. На миллиардера Дж.П. Моргана, финансировавшего строительство, последовал жестокий нажим, в том числе и от подкупленных конкурентами правительственных чиновников.

Начались перебои с поставками оборудования, строительство застопорилось, а когда Морган под этим нажимом прекратил финансирование, и вовсе прекратилось. В начале Первой мировой войны, по наущению тех же конкурентов, правительство США распорядилось взорвать уже готовую башню под надуманным предлогом, что ее могут использовать в целях шпионажа. Ну а затем электротехника пошла привычным путем.

Долгое время никто не мог повторить эксперименты Теслы хотя бы потому, что потребовалось бы создать аналогичную по размерам и мощности установку. Но в том, что Тесле удалось найти способ передачи электрической энергии на расстояние без проводов, более ста лет назад никто не сомневался. Авторитет Теслы, имевшего рейтинг второго после Эдисона изобретателя, во всем мире был достаточно высок, а его вклад в развитие электротехники переменного тока (в пику Эдисону, ратовавшему за постоянный ток) несомненен. При его экспериментах присутствовало много специалистов, не считая прессы, и никто никогда не пытался уличить его в каких-либо фокусах или подтасовке фактов. О высоком авторитете Теслы свидетельствует и название его именем единицы напряженности магнитного поля.

Вот только вывод Теслы о том, что во время эксперимента в Колорадо-Спрингс энергия была передана на расстояние 42 километра с к.п.д., равным около 90%, слишком оптимистичен. Напомним, что общая мощность зажженных на расстоянии ламп составляла 10 кВт, или 13 л.с., в то время как мощность динамо-машины, питавшей вибратор, достигала 300 л. с. То есть можно говорить о к.п.д. всего лишь порядка 4-5%, хотя и эта цифра поразительна.

Физическое обоснование экспериментов Теслы по беспроводной передаче электроэнергии до сих пор волнует многих специалистов. Одним из них было высказано интересное предположение, что своеобразным аккумулятором энергии, возвращавшим в Землю извлеченный из нее заряд, было громадное, сильно ионизированное облако, возникающее вокруг шара на верхушке мачты установки Теслы, с которого во время ее работы били громадные искусственные молнии. Иначе говоря, был создан своеобразный пульсирующий насос, периодически менявший заряд всей Земли (кстати, не такой уж большой). Желающим подсчитать емкость Земли как конденсатора напомним, что емкость шара численно равна его радиусу в сантиметрах, а «сантиметр» емкости условно равен одной пикофараде.

И лишь спустя сто лет после знаменитой демонстрации Теслы появились сведения о первых попытках воспроизвести их на современном оборудовании. Причем пришлось начать сначала — с эксперимента Теслы по передаче электроэнергии по одному проводу. Эксперименты проводились в июле 1990 года в лаборатории Московского энергетического института. В присутствии комиссии из специалистов их проводил инженер С. Авраменко. Источником энергии был модифицированный трансформатор Теслы, к одной из клемм которого подключалась линия длиной около трех метров (опыт был лабораторный). В усложненном варианте опыта линия представляла собой тончайшую вольфрамовую проволоку диаметром 15 микрон и с громадным сопротивлением. Но по ней удалось передать мощность в 1,3 кВт для гирлянды электрических лампочек, а провод при этом оставался холодным, словно он приобрел свойства сверхпроводника.

В более раннем эксперименте 1989 года на опыты Авраменко приехали посмотреть заместитель министра энергетики и начальники главков. Удивлялись и разводили руками точно так же, как и присутствовавшие сто лет назад на демонстрации Теслы в Лондоне тамошние специалисты. Ну а к 1991 году Авраменко увеличил длину линии передачи электроэнергии по одному проводу до 160 метров.

Кстати, характерна в этом отношении история электромобилей, появившихся более ста лет назад и еще тогда по своим параметрам успешно конкурировавших с автомобилями. С современными аккумуляторами они могут успешно соревноваться с ними и сейчас, но автомобильные олигархи делают все, чтобы не выпустить этого, по всем статьям опережающего автомобиль конкурента на мировой рынок.

3 способа беспроводной передачи энергии

Когда компания Apple представила свое первое беспроводное зарядное устройство для сотовых телефонов и гаджетов, многие посчитали это революцией и огромным скачком вперед в беспроводных способах передачи энергии.

Но были ли они первопроходцами или еще до них, кому-то удавалось проделать нечто похожее, правда без должного маркетинга и пиара? Оказывается были, притом очень давно и изобретателей таких было множество.

Так еще в далеком 1893г прославленный Никола Тесла, продемонстрировал изумленной публике свечение люминесцентных ламп. При том, что все они были без проводов.

Сейчас такой фокус может повторить любой школьник, выйдя в чистое поле и встав с лампой дневного света под линию высокого напряжения от 220кв и выше.

Чуть попозже, Тесла уже сумел зажечь таким же беспроводным способом фосфорную лампочку накаливания.

В России в 1895г А.Попов показал в работе первый в мире радиоприемник. А ведь по большому счету это тоже является беспроводной передачей энергии.

Самый главный вопрос и одновременно проблема всей технологии беспроводных зарядок и подобных методов заключается в двух моментах:

  • как далеко можно передать электроэнергию таким способом
  • и какое количество

Для начала давайте разберемся, какую мощность имеют приборы и бытовая техника нас окружающие. Например для телефона, смартчасов или планшета требуется максимум 10-12Вт.

У ноутбука запросы уже побольше — 60-80Вт. Это можно сравнить со средней лампочкой накаливания. А вот бытовая техника, особенно кухонная, кушает уже несколько тысяч ватт.

Поэтому очень важно не экономить с количеством розеток на кухне.

Так какие же методы и способы для передачи эл.энергии без применения кабелей или любых других проводников, придумало человечество за все эти годы. И самое главное, почему они до сих пор не внедрены столь активно в нашу жизнь, как того хотелось бы.

Взять ту же самую кухонную технику. Давайте разбираться подробнее.

Передача энергии через катушки

Самый легко реализуемый способ — использование катушек индуктивности.

Здесь принцип очень простой. Берутся 2 катушки и размещаются недалеко друг от друга. На одну из них подается питание. Другая играет роль приемника.

Когда в источнике питания регулируется или изменяется сила тока, на второй катушке магнитный поток автоматически также изменяется. Как гласят законы физики, при этом будет возникать ЭДС и она будет напрямую зависеть от скорости изменения этого потока.

Казалось бы все просто. Но недостатки портят всю радужную картинку. Минусов три:

  • маленькая мощность

Данным способом вы не передадите большие объемы и не сможете подключить мощные приборы. А попытаетесь это сделать, то просто поплавите все обмотки.

  • небольшое расстояние

Даже не задумывайтесь здесь о передаче электричества на десятки или сотни метров. Такой способ имеет ограниченное действие.

Чтобы физически понять, насколько все плохо, возьмите два магнита и прикиньте, как далеко их нужно развести, чтобы они перестали притягиваться или отталкиваться друг от друга. Вот примерно такая же эффективность и у катушек.

Можно конечно исхитриться и добиться того, чтобы эти два элемента всегда были близко друг от друга. Например электромобиль и специальная подзаряжающая дорога.

Но в какие суммы выльется строительство таких магистралей.

Еще одна проблема это низкий КПД. Он не превышает 40%. Получается, что таким способом передать много эл.энергии на большие расстояния вы не сможете.

Тот же Н.Тесла указал на это еще в 1899г. Позже он перешел на эксперименты с атмосферным электричеством, рассчитывая в нем найти разгадку и решение проблемы.

Однако какими бы не казались бесполезными все эти штуки, с их помощью до сих пор можно устраивать красивые светомузыкальные представления.

Или подзаряжать технику гораздо большую чем телефоны. Например электрические велосипеды.

Лазерная передача энергии

Но как же передать больше энергии на большее расстояние? Задумайтесь, в каких фильмах подобную технологию мы видим очень часто.

Первое что приходит на ум даже школьнику — это «Звездные войны», лазеры и световые мечи.

Безусловно, с их помощью можно передать большое количество эл.энергии на очень приличные расстояния. Но опять все портит маленькая проблемка.

К нашему счастью, но несчастью для лазера, на Земле есть атмосфера. А она как раз таки хорошо глушит и кушает большую часть всей энергии лазерного излучения. Поэтому с данной технологией нужно идти в космос.

На Земле также были попытки и эксперименты по проверке работоспособности метода. Nasa даже устраивали состязания по лазерной беспроводной передаче энергии с призовым фондом чуть менее 1млн.$.

В итоге выиграла компания Laser Motive. Их победный результат — 1км и 0,5квт переданной непрерывной мощности. Правда при этом в процессе передачи, ученые потеряли 90% всей изначальной энергии.



Но все равно, даже с КПД в десять процентов, результат посчитали успешным.

Напомним, что у простой лампочки полезной энергии, которая идет непосредственно на свет, и того меньше. Поэтому из них и выгодно изготавливать инфракрасные обогреватели. 

Неужели нет другого реально работающего способа передать электричество без проводов. Есть, и его изобрели еще до попыток и детских игр в звездные войны.

Оказывается, что специальные микроволны с длиной в 12см (частота 2,45Ггц), являются как бы прозрачными для атмосферы и она им не мешает в распространении.

Какой бы ни была плохой погода, при передаче с помощью микроволн, вы потеряете всего пять процентов! Но для этого вы сначала должны преобразовать электрический ток в микроволны, затем их поймать и опять вернуть в первоначальное состояние.

Первую проблему ученые решили очень давно. Они изобрели для этого специальное устройство и назвали его магнетрон.

Причем это было сделано настолько профессионально и безопасно, что сегодня каждый из вас у себя дома имеет такой аппарат. Зайдите на кухню и обратите внимание на свою микроволновку.

У нее внутри стоит тот самый магнетрон с КПД равным 95%.

Но вот как сделать обратное преобразование? И тут было выработано два подхода:

В США еще в шестидесятых годах ученый У.Браун придумал антенну, которая и выполняла требуемую задачу. То есть преобразовывала падающее на него излучение, обратно в электрический ток.

Он даже дал ей свое название — ректенна.

После изобретения последовали опыты. И в 1975г при помощи ректенны, было передано и принято целых 30 квт мощности на расстоянии более одного километра. Потери при передаче составили всего 18%.

Спустя почти полвека, этот опыт до сих так никто и не смог превзойти. Казалось бы метод найден, так почему же эти ректенны не запустили в массы?

И тут опять всплывают недостатки. Ректенны были собраны на основе миниатюрных полупроводников. Нормальная работа для них — это передача всего нескольких ватт мощности.

А если вы захотите передать десятки или сотни квт, то готовьтесь собирать гигантские панели.

И вот тут как раз таки появляются не разрешимые сложности. Во-первых, это переизлучение.

Мало того, что вы потеряете из-за него часть энергии, так еще и приблизиться к панелям без потери своего здоровья не сможете.

Вторая головная боль — нестабильность полупроводников в панелях. Достаточно из-за малой перегрузки перегореть одному, и остальные выходят из строя лавинообразно, подобно спичкам.

В СССР все было несколько иначе. Не зря наши военные были уверены, что даже при ядерном взрыве, вся зарубежная техника сразу выйдет из строя, а советская нет. Весь секрет тут в лампах.

В МГУ два наших ученых В.Савин и В.Ванке, сконструировали так называемый циклотронный преобразователь энергии. Он имеет приличные размеры, так как собран на основе ламповой технологии.

Внешне это что-то вроде трубки длиной 40см и диаметром 15см. КПД у этого лампового агрегата чуть меньше, чем у американской полупроводниковой штуки — до 85%.

Но в отличие от полупроводниковых детекторов, циклотронный преобразователь энергии имеет ряд существенных достоинств:

  • большая мощность
  • стойкость к перегрузкам
  • отсутствие переизлучения
  • невысокая цена изготовления
Однако несмотря на все вышесказанное, во всем мире передовым считаются именно полупроводниковые методы реализации проектов. Здесь тоже присутствует свой элемент моды.

После первого появления полупроводников, все резко начали отказываться от ламповых технологий. Но практические испытания говорят о том, что это зачастую неправильный подход.

Конечно, ламповые сотовые телефоны по 20кг или компьютеры, занимающие целые комнаты никому не интересны.

Но иногда только проверенные старые методы, могут нас выручить в безвыходных ситуациях. 

В итоге на сегодняшний день, мы имеем три возможности передать энергию без проводов. Самый первый из рассмотренных ограничен как расстоянием, так и мощностью.

Но этого вполне хватит, чтобы зарядить батарейку смартфона, планшета или чего-то побольше. КПД хоть и маленький, но метод все же рабочий.

Способ с лазерами хорош только в космосе. На поверхности земли это не очень эффективно. Правда когда другого выхода нет, можно воспользоваться и им.

Зато микроволны дают полет для фантазий. С их помощью можно передавать энергию:

  • на земле и в космосе
  • с поверхности земли на космический корабль или спутник
  • и наоборот, со спутника в космосе обратно на землю

Реальные проекты в наши дни

За все последние годы, согласно вышеприведенным технологиям, ученые пытались и пытаются реализовать всего два проекта.

Первый из них начинался очень обнадеживающе. В 2000-х годах на о.Реюньон, возникла потребность в постоянной передаче 10кВт мощности на расстояние в 1км.

Горный рельеф и местная растительность, не позволяли проложить там ни воздушные линии электропередач, ни кабельные.

Все перемещения на острове в эту точку осуществлялось исключительно на вертолетах.

Для решения проблемы в одну команду были собраны лучшие умы из разных стран. В том числе и ранее упоминавшиеся в статье, наши ученые из МГУ В.Ванке и В.Савин.

Однако в момент, когда должны были приступать к практической реализации и строительству передатчиков и приемников энергии, проект заморозили и остановили. А с началом кризиса в 2008 году и вовсе забросили.

На самом деле это очень обидно, так как теоретическая работа там была проделана колоссальная и достойная реализации.

Второй проект, выглядит более безумным чем первый. Однако на него выделяются реальные средства. Сама идея была высказана еще в 1968г физиком из США П.Глэйзером.

Он предложил на тот момент не совсем нормальную идею — вывести на геостационарную орбиту в 36000 км над землей огромный спутник. На нем расположить солнечные панели, которые будут собирать бесплатную энергию солнца.

Затем все это должно преобразовываться в пучок СВЧ волн и передаваться на землю.

Этакая «звезда смерти» в наших земных реалиях.

На земле пучок нужно поймать гигантскими антеннами и преобразовать в электричество.

Насколько огромны должны быть эти антенны? Представьте, что если спутник будет в диаметре 1км, то на земле приемник должен быть в 5 раз больше — 5км (размер Садового кольца).

Но размеры это всего лишь малая часть проблем. После всех расчетов оказалось, что такой спутник вырабатывал бы электричество мощностью в 5ГВт. При достижении земли оставалось бы всего 2ГВт. К примеру Красноярская ГЭС дает 6ГВт.

Поэтому его идею рассмотрели, посчитали и отложили в сторонку, так как все изначально упиралось в цену. Стоимость космического проекта в те времена вылезла за 1трлн.$.

Но наука к счастью не стоит на месте. Технологии совершенствуются и дешевеют. Сейчас разработку такой солнечной космической станции уже ведут несколько стран. Хотя в начале двадцатого века для беспроводной передачи электроэнергии хватало всего одного гениального человека.

Общая цена проекта упала от изначальной до 25млрд.$. Остается вопрос — увидим ли мы в ближайшее время его реализацию?

К сожалению никто вам четкого ответа не даст. Ставки делают только на вторую половину нынешнего столетия. Поэтому пока давайте довольствоваться беспроводными зарядками для смартфонов и надеяться что ученым удастся повысить их КПД. Ну или в конце концов на Земле родится второй Никола Тесла.

Статьи по теме

Тесла Шоу от Иллюзорио. Электрическое шоу для детей и взрослых. Тесла шоу детям

Познавательное электрическое шоу, которое станет украшением любых праздников! Тесла Шоу от Иллюзорио – это научно-развлекательное шоу с электричеством для детей и взрослых. Зрители увидят возможности электричества, узнают, что такое катушка Тесла и смогут попробовать сами зажечь разноцветные лампы без проводов и станут повелителями молний! Шоу абсолютно безопасно!

Продолжительность Тесла шоу для детей и взрослых 25 минут. Программа рассчитана на любой возраст. Во время представления зрители принимают непосредственное участие, т. е. после демонстрации предмета — лампы или колбы, дети/взрослые могут подойти и самостоятельно зажечь лампы и колбы или пустить молнию. Весь процесс безопасен и проходит под непрерывным контролем.

Как проходит Тесла шоу?

В первой части электрического шоу зрители познакомятся с мини-катушкой Тесла и увидят, как в ее поле, без проводов, зажигаются лампочки и колбы наполненные разным газом. Желающие могут подойти и зажечь лампы и колбы самостоятельно.

Во второй части зрители увидят большую катушку (трансформатор) Тесла, поле которой намного сильнее. В поле большой катушки Тесла также можно не только зажечь лампы и колбы, но и пустить настоящие молнии. Самые смелые могут поймать разряд молнии на металлическую палочку или перчатку.

Третья часть Тесла Шоу — шоу с молниями под музыку. Смотрим, наслаждаемся и танцуем!

На финал, самые активные зрители получат бенгальские огни, зажженые от катушки Тесла. Самые смелые, могут подойти и зажечь бенгальские огни от трансформатора Тесла самостоятельно. Этим блистательным моментом мы завершим наше электрическое шоу и оставим яркие воспоминания о празднике!

 
Тесла-Шоу (электрическое шоу) для детей и взрослых от Иллюзорио

Тесла Шоу от Иллюзорио

В электрическом Тесла-шоу от Иллюзорио Вы увидите:

  • мини катушку тесла;
  • большую катушку (трансформатор) Тесла;
  • разноцветные лампы, загорающиеся в руках в поле катушек Тесла;
  • молнии в колбах;
  • поймаете молнию на перчатку или металлическую палочку;
  • шоу с молниями под музыку;
  • подарок зрителям — бенгальские огни, зажженные от катушки Тесла.
Тесла Шоу от Иллюзорио на детский праздник. Видео.

Тесла Шоу от Иллюзорио на корпоративный праздник.
Видео.

 

Как заказать Тесла Шоу для детей и взрослых на праздник?
Очень просто! — Звоните нам по указанным ниже телефонам! Мы будем рады приехать к Вам!

+7(910)402-46-22
+7(910)402-05-95
г.Москва

Энергичные люди: Эдисон, Тесла и Нортон-режиссер | Статьи

Бенедикт Камбербэтч борется за электрификацию Америки, Эдди Рэдмейн покоряет небеса, а Эмилия Кларк пытается пережить Рождество. На этой неделе в российский прокат выходит множество фильмов в самых разных жанрах, но на один, в сущности, сюжет — как гордые одиночки противостоят судьбе и законам природы. «Известия» рассказывают, что можно посмотреть в кино.

«Война токов»

Два изобретателя, ставших успешными предпринимателями, — Томас Эдисон (Бенедикт Камбербэтч) и Джордж Вестингуаз (Майкл Шеннон) — схлестнулись не на жизнь, а на смерть, кто первый электрифицирует Америку. Поначалу лидировал Эдисон. Он изобрел лампочку и смог с помощью постоянного тока осветить целый квартал. Однако Вестингауз поставил на переменный ток и не прогадал — тот дешевле, доступнее, хотя и опасен для жизни. Каждый день Эдисон теряет город за городом и уже не стесняется идти на откровенную подлость. В итоге решающую роль сыграет еще один изобретатель, эмигрант Никола Тесла (Николас Холт). Чью сторону он примет, тот и победит.

Больше всего «Война токов» похожа на «Престиж» Кристофера Нолана, пусть и без мистики и фокусов, зато на основе реальных событий. Но судьба у картины сложилась не в пример печальнее. Продюсером проекта был Харви Вайнштейн, который после обвинений в сексуальном насилии лишился своей библиотеки фильмов. В числе прочих «Война токов» легла на полку, и вот только теперь, спустя три года, наконец дошла до зрителя. У фильма впечатляющий актерский состав — тут также играют и Человек-паук Том Холланд, и Кэтрин Уотерстон из «Фантастических тварей». Но и закадровая команда не отстает — в продюсерах значатся Тимур Бекмамбетов и Мартин Скорсезе.

Режиссер: Альфонсо Гомес-Рехон

В ролях: Бенедикт Камбербэтч, Том Холланд, Майкл Шеннон, Николас Холт, Кэтрин Уотерстон, Мэттью Макфэдиен, Таппенс Мидлтон

«Сиротский Бруклин»

Эдвард Нортон, звезда легендарного «Бойцовского клуба», из-за сложного характера давно испортил свою голливудскую карьеру. В большом кино он появляется редко и то, как правило, на втором плане. Но и без дела артист тоже не сидит. Сценарий «Сиротского Бруклина» Нортон писал сам в течение многих лет. В итоге сам же поставил и спродюсировал фильм, а заодно сыграл в нем главную роль. Ну и позвал к себе в компанию многих друзей. Тут засветились и Брюс Уиллис, и Алек Болдуин, и Уиллем Дефо, и Бобби Каннавале.

За основу Нортон взял одноименный роман Джонатана Летема, однако перенес действие из 1990-х в 1950-е, усилив и без того явственную атмосферу нуара. Его герой, частный детектив Лайонел Эссрог, расследуя убийство наставника Фрэнка (Уиллис), разоблачает махинации коррумпированной городской верхушки. Сюжет более чем знакомый, а вот протагонист оказался совсем нетипичным для нуара. Лайонел — смешной неудачник, который страдает синдромом Туретта, что серьезно усложняет его личную и профессиональную жизнь.

Режиссер: Эдвард Нортон

В ролях: Эдвард Нортон, Гугу Эмбата-Ро, Алек Болдуин, Бобби Каннавале, Уиллем Дефо, Брюс Уиллис, Итан Сапли

«Рождество на двоих»

Новый год постепенно вступает в свои права, и в прокат начинают выходить праздничные релизы. Первый на очереди — новый британский ромком от режиссера хитов «Копы в юбке», «Шпион» и «Девичник в Вегасе» Пола Фига со звездой «Игры престолов» Эмилией Кларк. Молодая неудачница, без денег и особых планов на жизнь, работает в магазинчике подарков рождественским эльфом и медленно погружается на дно депрессии. Но однажды она встречает симпатичного парня (Генри Голдинг), который идеален во всех отношениях — настолько, что похож скорее на плод воображения, чем реального человека.

К слову, важную роль в фильме сыграла также одна из его сценаристок Эмма Томпсон — профессор Трелони из «Гарри Поттера» и дважды лауреат премии «Оскар» (в том числе, за сценарий к экранизации Джейн Остин «Разум и чувства»). Как признаются создатели, фильм вдохновлен песнями Джорджа Майкла (который ушел из жизни три года назад как раз в Рождество) и в оригинале даже называется по его главному хиту Last Christmas. В общем, релиз для всех тех, кто соскучился по «Дневникам Бриджит Джонс» и заснеженному Лондону.

Режиссер: Пол Фиг

В ролях: Эмилия Кларк, Генри Голдинг, Мишель Йео, Эмма Томпсон, Ребекка Рут, Лидия Леонард, Пэтти ЛюПон

«Аэронавты»

Кроме «Войны токов» в эти выходные можно посмотреть еще одну историю про ученых-первопроходцев XIX века, но по жанру это уже не триллер, а приключения. Известный метеоролог Джеймс Глейшер (Эдди Редмэйн) вместе с энтузиасткой аэронавтики Амелией Рен (Фелисити Джонс) отправляется в смертельно опасное путешествие на воздушном шаре, чтобы впервые в истории человечества подняться на высоту более 10 тыс. м. Впереди их ждут молнии, разреженный воздух, холод — ну и любовь, конечно.

Поставил фильм британец Том Харпер, известный по последней экранизации «Войны и мира». Он же написал сценарий вместе с Джеком Торном, автором сериалов «Бесстыдники» и «Отбросы». Интересно, что Редмэйн и Джонс не в первый раз изображают влюбленную пару — ранее они сыграли чету Хокингов в фильме «Вселенная Стивена Хокинга», за который Эдди получил «Оскар».

Режиссер: Том Харпер

В ролях: Фелисити Джонс, Эдди Редмэйн, Химеш Патель, Том Кортни, Фиби Фокс, Энн Рейд, Тим Макиннерни

«Простой карандаш»

На этой неделе в прокат вышли сразу пять российских фильмов. Среди них две военные драмы — «Ржев» и «Красный призрак», криминальная драма, приквел популярной дилогии «Решала. Нулевые». А также «Конец сезона», вольный пересказ чеховских «Трех сестер» в современных реалиях, причем с такими звездами в кадре, как Анна Чиповская, Юлия Пересильд и Юлия Снигирь. На этом фоне нетрудно проглядеть тихую драму «Простой карандаш» Натальи Назаровой, одного из лауреатов последнего фестиваля «Окно в Европу» в Выборге.

Молодая учительница (Надежда Горелова) переезжает в маленький провинциальный городок — вслед за мужем (Владимир Мишуков), безвинно осужденным и этапированным в местную колонию. Очевидно, близость тюрьмы сказывается на местном населении — повсюду царит равнодушная покорность. С первых же уроков в новой школе героиня вступает в конфликт с негласным лидером класса — рослым гопником, который лучше других сверстников усвоил правила взрослой жизни.

Режиссер: Наталья Назарова

В ролях: Надежда Горелова, Владимир Мишуков, Александр Кольчевский, Кирилл Веселов, Олеся Иванцова, Александр Доронин

ЧИТАЙТЕ ТАКЖЕ

Ламповая катушка Теслы / Хабр

Хомяки приветствуют вас, друзья.

Сегодняшний пост будет посвящен высокому напряжению. Ламповый трансформатор Тесла является самой тихой конструкцией из всех существующих вариантов. Тут, в качестве генератора высокочастотных колебаний используется мощный пентод ГК-71, благодаря которому можно получать красивые, достаточно длинные разряды в воздухе. В ходе данной работы рассмотрим основные элементы конструкции, узнаем секреты по настройки схемы и визуализируем сигнал с высоковольтной обмотки на экран советского осциллографа. Дальнейшая работа будет заключаться в компактном размещении всех элементов в одном корпусе. В общем всё как вы любите. Простота, надежность и небольшая стоимость делает данную катушку доступной каждому, кто захочет её собрать.

Прелесть ламповой катушки Тесла заключается в том, что одну часть деталей для неё можно достать из обычной микроволновки, а вторую из ближайшего магазина электрики. С пентодом может возникнуть проблема, вещь старая и давно не выпускается, но тот кто ищет — тот всегда найдет. В дальнейшем вы поймете, что его можно заменить на любую другую лампу похожей конструкции.

ГК-71 выбран из-за эстетической красоты и небольшой стоимости. Кто не обратил внимания, анод в этой вакуумированной пробирке полностью состоит из графита, хорошая реализация для рассеивания больших мощностей, по паспортным данным эта цифра составляет 250 Вт. Номинальное анодное напряжение составляет 1.5 киловольта. Максимальная частота 20 МГц.

Данный экземпляр был выпущен в 1981 году. Достался новым прямо из коробки. Непрерывное время работы по документам, составляет 1000 часов. Это примерно 42 дня. В год, на постоянно работающем устройстве, необходимо сменить 8 таких товарищей. По некоторым подсчётам, выпущенных в свое время Ламп ГК-71 хватит еще минимум лет на 200.

Накал — это та часть которая вдыхает жизнь в любую радиолампу. Напряжение для пентода ГК-71 составляет 20 вольт, но ток при этом должен быть не меньше 3.5 ампер.В общем накал жрет 70 Вт. На рынке за символическую сумму был приобретен отечественный трансформатор ТН54-220-50. При правильном подключении обмоток с него можно получить 85 Вт без каких-либо финансовых затрат.

Следующий элемент — это высоковольтный трансформатор от микроволновки, буржуи называют его МОТ. Напряжение на его выходе составляет 2 киловольта, ток порядка 1 ампера. Довольно мощная и опасная вещь, может отправить вас на встречу к создателю, потому не стоит увлекаться.

Дальше идёт краткий перечень элементов, необходимых для сборки конструкции:
2 масляных конденсатора от той же микроволновки, напряжение 2.1 кВ, емкость 0.95 мкФ. Диодная сборка HYR-1x, её максимально допустимое напряжение 12 кВ, ток 500 мА, по паспорту способен выдержать импульсный ток до 30 ампер. Настоящий зверь в своем роде. Резисторы типа ПЭВ-на 10-20 Вт, можно использовать любые другие аналоги буржуйского производства.

Резонансный высокочастотный конденсатор типа КВИ-3, напряжение может варьироваться от 5 до 20 кВ, для настройки было закуплено несколько таких товарищей с разным номиналом ёмкости на борту. Для намотки индуктора был приобретен многожильный медный провод типа ПВС, сечение 1.5 квадрата. Длина порядка 16 метров. Катушка связи имеет другой цвет и длину 10 метров. Все провода взяты по длине с запасом.

Рубильники коммутирующие силовые части, взяли с допустимым током до 15 ампер, не спрашивайте зачем так много, запас карман не жмёт.

Теперь вторичная высоковольтная обмотка, она же «резонатор». Намотка этой детали требует много времени и терпения. Тут использован медный лакированный провод толщиной 0.2 мм, мотается виток к витку на картонной основе от пищевой пленки. Диаметр трубы 55 мм. Высота намотки получилась 35 см. Витки при этом не должны пересекаться и накладываться друг на друга.

После намоточных процедур результат следует покрыть слоем диэлектрика во избежание пробоя обмотки. Эпоксид наносится в два слоя для надёжности. В результате выйдет глянцевая, переливающаяся на свету труба, которая отнимет часть вашей драгоценной жизни. Второй дубликат катушки был намотан на пластиковой канализационной трубе диаметром 50 мм. ПВХ более надежный диэлектрик, в этом скоро убедимся. Каркас для индуктора был взят из того же картона только большего диаметра, примерно 80 мм.

Для проведения дальнейших работ, необходимо как можно компактней разместить трансформаторы, конденсаторы и прочую ерунду на какой-то крепкой основе. Листы ДСП давно валяются без дела, потому следует разметить их, и пустить в ход электролобзик, работа и звуки которого благородно влияют на жизнь ваших соседей, особенно это актуально по выходным дням.

Конструкция будет двухэтажная. Снизу разместятся трансформаторы с конденсаторами, а сверху разместим Пентод и саму катушку Тесла. Долго думал как скрепить первый этаж со вторым, решил использовать деревянные чепки. Надёжность тут конечно покраснела и пошла выпивать вслед за совестью. Желе какое-то. Надеваем розовые очки и выпиливаем отверстие под радио лампу. Затем с обратной стороны делаем отверстия под провода.

Теперь про индуктор. Сейчас мы точно не знаем сколько нужно витков, мотаем 40, при настройке его всё равно придётся отматывать в меньшую сторону для поиска резонанса. Обмотка обратной связи мотается в одну сторону с индуктором. Количество витков в два раза меньше, то есть 20. Такое соотношение встречается во многих ламповых катушках Тесла.

Момент который не очень понял. В некоторых схемах обмотка связи располагается в нижней части трансформатора Тесла, где развиваются наибольшие токи, а в некоторых сверху над индуктором. Какой вариант расположения лучше мне не известно, но в данной схеме она размещается сверху.

Панельку для установки пентода нам найти не удалось, довольно редкая вещь, потому альтернатива крепления — клеммная колодка для провода с диаметром отверстий 4 мм. Зажимы в ней отлично фиксируют ножки пентода. В качестве декоративной подставки использована фанера, которая была магнитом на двери холодильника.

Теперь время подсоединить провода к накальному трансформатору, и посмотреть всё ли работает. Подаем питание и наблюдаем за показаниями амперметра. 3 ампера, как и паспорт предписывал. По мере прогрева, потребление тока незначительно падает. Камера увы не смогла передать всей красоты раскаленных ниточек внутри этого стеклянного баклажана. Здоровенное лампище… Вот же ж умели делать!

Вся схема устройства довольно простая и выглядит примерно так: переменное высокое напряжение с мота выпрямляется через диод и заряжает конденсаторы от микроволновки, соединены они последовательно для увеличения рабочего напряжения. В этом случае суммарная ёмкость выходит пол микрофарада. Колебательный контур индуктора подключён к аноду лампы через дроссель, состоящий из 10 витков. Все управляющие сетки лампы ГК71 соединены вместе, с этого момента пентод превращается в триод. Схема автогенератора начинает работать при очень малых напряжениях на входе мота. Конденсатор в 2.2 нФ на выходе накального трансформатора служит для фильтрации наводок и высокочастотных выбросов, хотя первое = второе, второе = первое, как-то так. Обращаем внимание на подключение обмоток в первичном контуре. Точка — это нижний вывод обмотки.

В принципе сборка получилась довольно компактной. Её работу запросто можно демонстрировать на уроках физики, вспоминая жизнь того чувака, благодаря которому у нас в розетках переменное напряжение.

Трансформатор Тесла требует хорошего заземления. Батарея не самое лучшее решение для этих дел, но за неимением ничего более подходящего и это сойдет. Контакт должен быть надежным, три метра провода должно хватить, чтобы дотянутся куда угодно в пределах одной комнаты.

В новых домах такой фокус может не пройти из-за металлопластиковых труб в системе отопления. Потому проверяем наличие напряжения между фазой и землей, должно быть 220 вольт. Некоторые пускают заземление через зануление, тоже годный вариант. Между нулем и землей существует потенциал в 3.7 вольта, Креосан недавно рассказывал как можно воровать электричество подобным способом, заряжать телефон и зажигать лампочки, вот только забыл упомянуть тот факт, что современные цифровые счетчики считают потребление энергии как по фазе, так и по нулю. Максимум что вы выиграете, так это визит инспектора к себе в гости.

Итак, включаем питание накальной цепи. Лампа выходит на режим достаточно быстро, секунд 5 хватает для этого дела. Второй рубильник подает питание на мот. Ни в коем случае нельзя подавать высокое напряжение на анод лампы, без включенного накала. Входное напряжения на моте, регулируется с помощью ЛАТР-а, он дает напряжение от нуля до 220 вольт. Незаменимая вещь в работе с подобными схемами. Повышаем напряжение и видим, что генератор заработал. С появлением высокочастотного электрического поля светодиодный светильник закрепленный под полкой начинает немного светится и мигать.

На кончике отвертки, что служит терминалом для выхода молний появился небольшой стример. По мере повышения напряжения размер его растет, но разряды какие-то тонкие и не внушительные. Изменим положение обмотки связи, сместим её чуть вниз. Смотрим что поменялось в работе. Постепенно повышаем напряжение… видим что разряды стали более уверенными, толще, длинней и ярче. Звук довольно внушительный, похож на глухой рёв спортивного автомобиля.

Поиск резонанса осуществлялся либо отматыванием витков, либо подбором резонансного конденсатора. Начал отматывать витки. Увеличение мощности разрядов говорит от том, что мы на правильном пути. Разряды мощней, толще, длинней, самое интересное произошло тогда, когда начал увеличивать емкость резонансного конденсатора. Разряд увеличился, и на глазах начал уменьшатся. Запахло горелой бумагой.

При детальном осмотре выявилось, что картон начал прогорать. А если появился маленький прогар, то он постепенно превращается в большой, так как углерод получившийся в результате сгорания чего-либо становится отличным проводником. В общем это гангрена, которую необходимо немедленно ампутировать. Избавляемся от проблемного участка с помощью ножовки по металлу. Пару минут, проблема решена, а рука подкачана.

Так как резонансный контур изменил свои характеристики путем уменьшения длины вторичной катушки, снова доматываем и отматываем витки первички. Мощность увеличивается. Настроение превосходное, пару секунд радости и конструкция начинает подводить. Вторичку пробивает на первичку. Слишком близко размещены обмотки друг к другу. Предположения были что такое может произойти, но не так быстро. Первый день настройки, и многочасовая работа отправляется на помойку. При желании, эту трубу можно разрезать надвое, и сделать к примеру качер Бровина на транзисторе.

Поначалу хотел изолировать вторичку с помощью пластиковой бутылки, но как показывает практика — этот колхоз ни к чему хорошему не приводит. Одеваем кроссовки и выдвигаемся в ближайший сантехнический магазин за сливной 10-сантиметровой трубой. Такой диаметр уменьшит коэффициент связи обмоток, что есть хорошо в данной конструкции. Диэлектрические способности у такого цилиндра куда лучше чем у обычного картона.

Поверх трубы намотаем слой бумаги, на нее укладываем витки индуктора и обмотки связи. Бумага позволяет спокойно передвигать обмотки по всей длине трубы. Устанавливать катушки удобно на заглушки, они родом из того же магазина сантехники и позволяют соблюдать центровку всего резонансного контура. Немного усилий и конструкция снова готова к работе. Повторяем процедуру включения. В начале подаем питание на накал, ждём пару секунд, а затем включаем анодное напряжение. Оно сейчас в нуле и регулируется лабораторным автотрансформатором. Включаем его и постепенно поднимаем напряжение.

Разряды с увеличением коэффициента связи стали больше и красивей. На этом моменте наверное стоило завершить пост, схема заработала, разряд мы увидели. Но по традициям на этом, всё только начинается.

Для окончательной и более правильной работы, автогенератор необходимо настроить на осциллографе. Настраивать систему будем по максимальной амплитуде сигнала. Щуп осциллографа подключать напрямую к схеме не будем, для настройки разместим его на уровне тора и будем смотреть эфирный сигнал. Вся наводка, форма, частота и амплитуда сигнала отобразится на экране осциллографа. В данной схеме, этой информации для настройки будет более чем достаточно. Включаем накал. Подаем анодное напряжение. Регулируем напряжение автотрансформатором… но почему-то ничего не происходит… разбираемся что не так!? Ага, забыли подключить заземление, бывает, прикручиваем его на свое место и повторяем процедуру включения. Крутим ручку и сигнал оживает. Это наш индикатор в мире настройки. Входное напряжение на моте всего 50 вольт, отлично, нам сейчас разряды в воздухе не нужны.

Альтернативой обнаружения высокочастотных полей может служить обыкновенная неоновая лампочка. Амплитуду сигнала ею определить не выйдет, но зато можно судить о работоспособности устройства в целом, правильной или нет — это уже другое дело.

Итак, в процессе настройки удалось выделить два интересных режима работы. Первый это плавно затухающий импульс с небольшой амплитудой в отличии от второго режима. Сейчас мы перекидываем провода на разные витки индуктора и наблюдаем как меняется сигнал. Внимание вопрос знатокам. Какой режим автогенератора дает наибольшие разряды: вариант «а»- с плавно затухающим сигналом, но малой амплитудой, или вариант «б»- с большой амплитудой, но коротким импульсом?

Настройка резонанса с помощью конденсаторов. У этих образцов разная емкость, как выбрать нужную? Всё просто, поочередно соединяем конденсаторы параллельно индуктору и смотрим на сигнал. Нужно быть при этом осторожным, тут развиваются большие токи, которые могут нанести фаталити вашей руке. Дохлые электронщики никому не нужны. Если емкость будет слишком большая, она попросту погасит всю амплитуду сигнала.

В начале выпуска я обещал рассказать зачем нужны такие массивные контакты на конденсаторах. Во время работы, особенно на резонансе, в индукторе развиваются огромные токи, порядка нескольких сотен ампер, если такой ток пойдет через тонкие ножки обычного конденсатора, они попросту перегорят как перемычка в предохранителе. В данной схеме хорошо прижился конденсатор КВИ3 на 1500 пФ 10 кВ. Год выпуска 1978, раритет в своем роде, старше меня лет на 10.

Схема автогенератора работает в принудительном режиме прерывания с частотой сети 50 Гц, если растянуть во времени затухающие колебания, можно высчитать частоту работы автогенератора. Синхронизируем эту старую рухлядь и приступаем к расчетам.

Сейчас, переключатель времени деления на осциллографе стоит в положении 0.5 мкс. Это означает, что одна клетка на шкале экрана равна 0.5 мкс. Один период синусоиды занимает 5 клеток, следовательно 5 умножаем на 0.5 равно 2.5 мкс. Частота находится по формуле: 1 деленная на период. Считаем. 1/2.5 мкс равняется 0.4 мГц, что равняется 400 кГц. Отсюда вывод, резонансная частота настроенной катушки Тесла, ровняется 400 кГц.

Расчеты могли быть более точными при наличии современного оборудования, но для данной схемы оно попросту не нужно. После настройки регулируем положения индуктора и обмотки связи так, чтобы амплитуда сигнала на осциллографе была максимальной. На этом этапе настройку ламповой катушки тесла, можно считай исчерпывающей. Потребление силовой части схемы без цепи накала, составляет 720 Вт.

В работе ламп есть что- то удивительное, когда берешь их в руки, возвращаешься в те далекие теплые времена. Транзисторы и прочая современная электроника со временем приедается, становится скучной. На лампу можно смотреть вечно, ну или 1000 часов пока не пропадет электронная эмиссия и катод не обеднеет. Теперь время посмотреть как это всё работает.

В процессе работы схемы, лампа не перегревается и может работать продолжительное время, скажем 10 минут без перерыва. Но находятся умельцы, которые ставят на выходе мота много-количественные сборки из микроволновочных конденсаторов, мощь схемы увеличивается, лампа начинает работать на пределе своих возможностей. Естественно графитовый анод лампы нагревается до красна, катод расходует свой ресурс. Такой режим работать будет, но не долго.

Для увеличения срока службы лампы на больших мощностях используют прерыватели. Это грубо говоря переключатель, который на короткое время запускает генератор на Тесле. Секунда работы, секунда отдыха, как-то так. Режимы естественно можно менять.

Свечение различных лампочек в высокочастотных электрических полях это вообще отдельная тема, некоторые образцы настолько красивы, что претендуют на отдельный пост.

Слыхали про то, что различными солями можно подкрашивать цвет огня, сейчас проверим это на практике. Для этого берем обыкновенную поваренную соль и разбавляем ее небольшим количеством воды. Получившуюся кашу наносим на электрод. Ионы натрия должны подкрасить молнию в оранжевый цвет, это сейчас и посмотрим.

Данная конструкция проста в повторении, и элементарна в настройке. В ней нет дорогих деталей, хотя цена — дело относительное, стоимость всех элементов составляет примерно 65 баксов не включая ЛАТР для регулировки входного напряжения в анодной цепи.

В одном из следующих постов мы рассмотрим полупроводниковую систему, там узнаем как рассчитывается резонанс, как управлять железом и прочую малоизвестную нормальному человеку ерунду.

Для справки. Съемка сегодняшнего выпуска вместе с пост обработкой, написанием текста и прочими процессами заняла 2 месяца. Это можно назвать быстрым выпуском. В комментариях вы часто пишете чтобы мы снимали материал в сфере физики и электроники, сейчас так и происходит, но тут есть обратная сторона медали, время. Теперь выпуски будут выходить реже чем обычно, надеюсь вы всё понимаете.

Как гласит народная мудрость: работа и труд — всё перетрут.



Полное видео проекта на YouTube
Наш Instagram

Эдисон и Тесла: ожесточенная «война токов» за будущее электричества

1891 год. На сцену в лекционном зале Колумбийского университета в Нью-Йорке выходит симпатичный высокий темноволосый мужчина. Он берет в каждую руку по медному шарику и касается клемм высоковольтного высокочастотного трансформатора (сегодня известного как катушка Теслы). По поверхности его тела пробегают 250 000 вольт. Как выразился один журналист, экспериментатор предстал перед зрителями «в лучезарной славе мириад языков электрического пламени».

Никола Тесла в своей лаборатории в Колорадо Спрингс делает заметки, пока над его головой бушует искусственно созданная электрическая буря. В этой лаборатории он работал в 1899 году и здесь же построил самую большую катушку Теслы в мире

Через некоторое время он отходит от аппарата, электрическая аура рассеиваются, и зрители видят, что он невредим. Кто же этот человек и зачем так рисковал?

Компания «Профпереклад» подготовила перевод материала.

Перевод от

Этого отчаянного смельчака звали Никола Тесла. Он изобрел двигатель переменного тока и продемонстрировал его безопасность на себе. Последние несколько лет Edison Electric Light Company вела кампанию против него и его изобретений, стремясь удержать свою долю на рынке.

Друзья Теслы в Westinghouse Electric Company выигрывали эту битву. В ответ группа Эдисона попыталась оспорить безопасность систем переменного тока, публикуя сенсационные истории в прессе. Тесла надеялся, что эта демонстрация перебьет черный пиар.

Шел конец 1880-х, электричество было неизведанной территорией вроде Дикого Запада, и никто не знал, какая система в итоге победит.

В 1876 году Эдисон утомился от бесконечных споров с хозяевами помещений в Ньюарке и решил построить собственную лабораторию в поселке Менло-Парк, Нью-Джерси, в 40 км от Нью-Йорка

Очень часто технологические разногласия (то есть сражение двух изобретателей, жаждущих распространить свои изобретения как можно шире) разрешаются рациональным путем. Одно изобретение может стоить дешевле второго, второе может оказаться более безопасным, а третье соответствует стандартам, установленным инженерами или властями, и потому хорошо продается.

Впрочем, время от времени разногласия разрешить не удается. Тесла и Эдисон воевали за будущее электропередач. В этой битве было все: шокирующие демонстрации, переход на личности, достойный школьников, и даже попытки объявить переменный ток вне закона. В итоге победил переменный ток. Рациональная проектировка и дешевизна массового распределения – вот и весь секрет.

Да будет свет

Многие убеждены, что в 1870 году Томас Эдисон самолично изобрел электрическое освещение. Это неправда. Первым электрическим светильником была дуговая лампа авторства Гемфри Дэви (1807 год). Дэви сконструировал в подвале Лондонского Королевского института огромную электрическую батарею, вдохновившись аналогичным изобретением Алессандро Вольты 1800 года.

Дабы продемонстрировать мощность своей батареи, Дэви подсоединил к ее клеммам два угольных стержня. Когда он развел стержни на небольшое расстояние и пустил по ним ток, между ними образовалась яркая световая дуга.

В следующие пятьдесят лет (1810–1860) изобретатели трудились над дуговыми лампами с электромеханическими регуляторами, которые помогали установить точное расстояние между стержнями для создания дуги. Однако все их изыскания ограничивались мощностью батарей. Для дальнейшего продвижения в этой области требовался новый источник электропитания.

Майкл Фарадей, английский химик, физик и изобретатель XIX века

Таким источником стала динамо-машина, она же генератор. В 1831 году у Дэви появился новый лабораторный ассистент, Майкл Фарадей. Он обнаружил, что при введении в магнитное поле проводника под нужным углом к этому полю в проводнике возникал индукционный ток. На основе принципа электромагнитной индукции Фарадея изобретатели проектировали новые генераторы электрического тока. Их надо было заводить вручную или подпитывать от парового двигателя.

Возможность использования дуговых ламп для освещения улиц и крупных зданий вдохновила других электриков на модернизацию генератора. В 1876 году Чарльз Браш из Кливленда спроектировал генератор постоянного тока, питавший четыре дуговые лампы в последовательном контуре. Эта конструкция использовалась в уличном освещении, на фабриках и в магазинах, включая универмаг Уонамейкера в Филадельфии.

Для освещения улиц и домов дуговые лампы подходили идеально. Даже сегодня их применяют в мощных прожекторах, широко используемых на открытии новых магазинов или масштабных кинопремьерах.

Гравюра Уильяма Аллена Роджерса для журнала Harper’s Weekly 1889 года. На ней изображеноэлектрическое освещение ночного Нью-Йорка

Эдисон и лампы накаливания

Если вам требовался более мелкий источник мягкого электрического света, дуговые лампы уже не годились. Эдисон быстро сообразил, что можно продавать маленькие лампочки как замену тогдашних газовых светильников. В 1878 году он бросил работу над телефоном и фонографом и с головой окунулся в мир электрического освещения, о котором он до этого момента ничего не знал.

Лампа 1879 года с углеродной нитью, которая светится при пропускании через нее тока. ФОТО: SSPL, GETTY

Для создания лампы поменьше Эдисон решил обратиться к эффекту накаливания (так называется свечение при нагревании). При достижении критической температуры предмет источает яркий свет. Поначалу Эдисон экспериментировал с платиной. У этого металла высокая точка плавления, поэтому изобретатель предположил, что через платиновую нить можно пропускать ток и заставить ее светиться.

Однако он сразу же обнаружил, что в процессе участвует еще и кислород. Платина почти сразу перегорала. Тогда Эдисон поместил металлическую нить в вакуумную стеклянную колбу. Это решило проблему горения, однако платина стоила слишком дорого и к тому же обладала низким электросопротивлением.

Это означало, что для такой системы освещения потребуются дорогие и очень толстые медные кабели. К счастью, Эдисон решил и эту задачку, всего лишь повысив сопротивление в каждой лампе и замкнув их в параллельные цепи.

Теперь требовалось найти металл с достаточно высоким сопротивлением. Эдисон и его команда несколько месяцев подбирали и испытывали материалы, пока не обнаружили, что лучше всего для этого подходит ламповая сажа, используемая в телефонных передатчиках. Вот как момент открытия был описан в одной из газет:

«Однажды ночью, сидя в своей лаборатории над незаконченным проектом, Эдисон начал бездумно перекатывать в пальцах кусочек спрессованной ламповой сажи, пока не скатал из нее тонкую нить. Один случайный взгляд навел его на мысль, что можно попробовать ее накалить. Через несколько минут он провел вполне успешный эксперимент, хоть результаты его и не удивили. Дальнейшие тесты помогли найти подходящую форму и состав вещества, и результат каждого эксперимента подтверждал, что изобретатель на верном пути».

Иллюстрация из Currier & Ives конца 1800-х. Эдисон (слева) и изобретатель дуговой лампы Чарльз Браш сражаются за освещение Нью-Йорка.

В октябре 1879 года Эдисон и его команда провели первые успешные эксперименты: они поместили углеродную нить в вакуумную колбу и накалили ее так, чтобы она при этом не сгорала. К новогодним праздникам Эдисон уже вовсю демонстрировал новые лампы толпам людей в своей лаборатории в Менло-Парк.

Однако для выхода на потребительский рынок этого было недостаточно. Теперь Эдисону предстояло сконструировать всю электрическую систему для питания своих ламп. Он смоделировал ее на основе систем газового освещения, используемых в крупных городах. Они состояли из центральных станций, подземных коммуникаций, счетчиков и зажимных приспособлений для самих ламп. Эдисон построил первую центральную станцию на Перл-стрит в нижнем Манхеттене в 1882 году. Здесь располагалась знаменитая Уолл-стрит и офисы нью-йоркской прессы. Место было выбрано идеально, теперь у Эдисона был доступ и к финансистам, и к медийщикам.

Перед монтажом станции он отправил своих людей обследовать район и посчитать газовые и керосиновые лампы, которые можно заменить на новое освещение. Чтобы компенсировать дороговизну медной электросети для питания ламп, Эдисон спроектировал систему постоянного тока для плотно населенных центральных городских кварталов. Обслуживание клиентов в радиусе чуть меньше двух километров от центральной станции оказалось довольно выгодным.

КРУПНЫЙ ИЗОБРЕТАТЕЛЬСКИЙ БИЗНЕС

Мужчины позируют у здания компании Эдисона – Edison Machine Works. ФОТО: CORBIS, GETTY

Для производства и выведения на рынок ламп накаливания Эдисону требовалась соответствующая инфраструктура. Он спроектировал целую систему для питания своих ламп, но на этом не остановился. Будучи предприимчивым дельцом, он основал компании для производства ламп, генераторов, кабелей и счетчиков: Edison Lamp Works, позднее переименованная в Edison ElectricLamp Company, Edison Machine Works и так далее.

Несмотря на то, что через несколько лет он проиграл «битву токов», компании Эдисона остались на плаву. В 1889 году они объединились в концерн Edison General Electric, который позднее сменил название на просто General Electric.

Восход переменного тока

Эдисон был прав: для мелких электрических лампочек нашелся подходящий рынок. Многие захотели заменить газовое освещение, так что в следующие несколько лет лампы накаливания приносили ему значительную прибыль. Эдисон был первопроходцем в этой области, но ему не удалось предотвратить выход конкурентов на рынок. Впрочем, главной проблемой Эдисона было то, что его систему могли потянуть только крупные города с густонаселенными центральными районами. Там у него было достаточно клиентов, которые могли покрыть стоимость прокладки медной проводки.

На этой гравюре изображена одна из центральных электростанций Нью-Йорка, построенных компанией Эдисона в 1882 году. ФОТО: AKG, ALBUM

В Америке было множество поселений, которые могли себе позволить электрическое освещение. Однако люди селились слишком хаотично и далеко друг от друга, а это не гарантировало экономность установки системы Эдисона. Любой, кому удастся выйти на этот стремительно расширяющийся рынок, стопроцентно обогатился бы!

Осознав это, Джордж Вестингауз решил спроектировать систему освещения, работающую от переменного тока. Он полагал, что можно уменьшить толщину медной проволоки (и сократить расходы), если поднять напряжение в сети (допустим, до 1000 вольт). Однако подача такого напряжения в жилые дома могла быть опасной.

Для дальнейших опытов Вестингауз позаимствовал в Европе трансформатор, который понижал напряжение с 1000 до 110 вольт. Такие трансформаторы работали только с переменным током, а это означало, что новая сеть Вестингауза станет слишком радикальным отходом от распространенных в то время систем Эдисона на постоянном токе.

Напряжение в них было постоянным (обычно 110 вольт), что делало их относительно безопасными для потребителей. Вдобавок, кабели для этой системы прокладывали линейно, как в телефонных и телеграфных системах, а это было куда проще для прокладчиков.

Предприниматель и изобретатель Джордж Вестингауз родился в Нью-Йорке в 1846 году. Всю свою жизнь он занимался модернизациями железнодорожного транспорта и энергетической промышленности. До своей смерти в 1914 году он зарегистрировал более 360 патентов на свое имя. ФОТО: BIANCHETTI, CORBIS/GETTY

В новой системе Вестингауза, работавшей от переменного тока, напряжение в линиях электропередач колебалось от +1000 до -1000 вольт. Это несло повышенный риск для прокладчиков кабелей, они могли получить смертельный удар током. Повышение напряжения в сети требовало улучшенной изоляции и разработки новых мер безопасности. Но поскольку системы переменного тока были куда дешевле для передачи электроэнергии на большие расстояния, все затраты на решение новых технических задач были вполне обоснованными.

Итак, в 1887 году переменный ток подавал большие надежды. Однако электромеханики вскоре поняли, что у них появилась новая проблема, на сей раз экономическая. В идеале система переменного тока должна охватывать весь город. Но при таких раскладах стоимость электростанции и электросети составляла сотни тысяч долларов.

Чтобы покрыть такую инвестицию, электростанция должна подавать электричество круглосуточно семь дней в неделю. Значит, что-то должно потреблять энергию в течение дня – двигатель, который можно использовать в транспорте, на заводах, в лифтах и бытовых приборах.

Тесла и двигатель переменного тока

На этом распутье и возник тот самый высокий темноволосый мужчина, у которого было подходящее изобретение – двигатель переменного тока. Изобретателя звали Никола Тесла.

Тесла родился в 1856 году в семье сербов, жившей на территории современной Хорватии. Отец Теслы был православным священником и надеялся, что сын последует по его стопам. Юный Никола куда сильнее верил в науку и отправился изучать машиностроение в Университет прикладных наук Йоаннеум в австрийском городе Грац.

Там Тесла увлекся разработками нового электромотора. Во всех моторах есть два комплекта электромагнитов: один стационарный (статор), другой на вращающемся валу (ротор). При подаче переменного тока на каждый комплект можно создать одинаковые магнитные поля в статоре и роторе. Они начинают отталкиваться друг от друга, тем самым заставляя вал мотора крутиться.

Индукционный двигатель Теслы оказался в самом центре «битвы токов». Его новаторская конструкция и эффективность произвели настоящую революцию в сфере энергетики в конце XIXвека. ФОТО: LEBRECH MUSIC, ALBUM

Понаблюдав за искрящим двигателем постоянного тока в классе физики, Тесла предложил убрать коммутатор (вращающийся переключатель, подающий питание на ротор двигателя). Его профессор физики решил, что подобная конструкция попросту нелепа, но Тесла настаивал на своем.

Следующие несколько лет изобретатель ломал голову над созданием безыскрового двигателя. Строить физическую модель он не стал – все конструировал в голове. В 1882 году Тесла переехал в Будапешт. Во время прогулки в городском парке к нему пришла гениальная идея: не надо менять магнитные полюса в роторе. Лучше использовать вращающеесямагнитное поле в двигателе.

До Теслы электродвигатели конструировались с постоянным магнитным полем в статоре, а магнитное поле в роторе менялось с помощью коммутатора. Изобретение Теслы былопротивоположностью стандартной практики. В своем двигателе Тесла получил нужную последовательность, включая и выключая ток в отдельных электромагнитах статора и тем самым создав вращающееся магнитное поле. Это поле, вращаясь, индуцировало противоположное по заряду электрическое поле в роторе и заставляло его вращаться. Тесла предположил, что вращающееся магнитное поле можно создавать с помощью переменного, а не постоянного тока, но на тот момент не знал, как это сделать.

МИРОВОЙ ЭНЕРГЕТИЧЕСКИЙ ПЛАН ТЕСЛЫ

Массивная вышка Теслы, построенная в 1901 году, была ранней версией беспроводного телекоммуникационного передатчика. В 1917 году ее снесли. ФОТО: ULLSTEIN BILD, GETTY

Самая известная лаборатория Теслы, Ворденклиф, располагалась на Лонг-Айленде. В 1901 году банкир Джон П. Морган одолжил Тесле $150 тысяч на реализацию плана по передаче энергии по всему миру. Известный архитектор Стэнфорд Уайт спроектировал основное здание, в котором генерировались волны электрического толка и подавались по кабелям в башню и на подземный вал.

Башня функционировала как гигантская катушка Теслы, усиливая ток до миллионов вольт и отправляя его через вал в земную кору. Тесла считал, что потребители могут подключиться к этим подземным потокам и подпитывать от них осветительные системы и двигатели.

Он также верил, что люди смогут носить с собой маленькие передатчики размером «не больше карманных часов» и принимать с их помощью новостные сообщения и телефонные звонки. К сожалению, Тесле не удалось добыть средства, чтобы продолжить эту работу. В 1905 году у него случился нервный срыв. Он был вынужден отдать Ворденклиф своим кредиторам.

Сегодня башню реставрируют при поддержке тысяч поклонников гениальности Теслы, включая Илона Маска.

Следующие пять лет Тесла набирал практический опыт для усовершенствования своего двигателя. Он помог наладить телефонную связь в Будапеште и переехал в Париж, чтобы поработать с Continental Edison Company, проводившей освещение в крупных европейских городах. В 1884 году Тесла перевелся в нью-йоркский филиал Edison Machine Works. Там он немного пообщался с Эдисоном, после чего его приставили к разработке системы дугового освещения. После спора об оплате за свои разработки разъяренный Тесла уволился.

Поработав с командой из Рауэй, Нью-Джерси, Тесла представил собственную систему дугового освещения, но компания вскоре закрылась. Изобретателю пришлось рыть канавы, чтобы свести концы с концами. Невзирая на все жизненные трудности, он все же нашел в себе силы подать патент на термомагнитный двигатель. Его изобретение привлекло внимание Чарльза Ф. Пека и Альфреда С. Брауна, финансистов с Уолл-стрит. Двигатель заинтриговал их, и в 1886 году они арендовали для Теслы лабораторию на Манхеттене.

Тесла занялся усовершенствованием термомагнитного двигателя, но этот вариант все же оказался нерабочим. Пек предложил ему вернуться к работе над двигателем переменного тока. Опираясь на свои будапештские идеи, Тесла экспериментировал с несколькими переменными токами в двигателе. Это было довольно авантюрным решением, поскольку инженеры в Westinghouse Electric (да и вообще везде) использовали в своих системах только один переменный ток.

В 1887 году Тесла обнаружил, что может сгенерировать вращающееся магнитное поле, подавая два разных переменных тока на пару катушек на противоположных сторонах статора. Современные инженеры бы сказали, что двигатель Теслы работал на двухфазном токе. Довольный результатом, Тесла подал патентную заявку на новое изобретение и идею дальней передачи многофазного переменного тока.

Вестингауз мог использовать свои электростанции (на фото), чтобы обслуживать больше людей и охватить более обширные территории. Для передачи электроэнергии на большие расстояния переменный ток был куда дешевле и эффективнее. Системам Эдисона такое и не снилось. ФОТО: BETTMANN, CORBIS/GETTY

Когда стало ясно, что у изобретения Теслы есть многообещающее будущее, его спонсоры задумались над тем, как же продвигать его в массы. Для Пека и Брауна не было смысла производить двигатель Теслы. Нет, они хотели продать патенты подороже.

В качестве рекламы они организовали для Теслы лекцию в Американском университете электротехники в 1888 году. Их план сработал. После лекции Джордж Вестингауз приобрел патенты Теслы за $200 тысяч. В пересчете на сегодняшние деньги эта сделка обошлась бы в $5 миллионов.

Битва токов

Получив в свое распоряжение систему питания для лампочек и двигателей, Вестингауз атаковал своего главного конкурента, Edison Electric Light Company. Он заключал контракты на покрытие всех территорий, которые не могла обслужить система Эдисона, а именно города, где население было разбросано по большой территории.

Пользуясь прибылью от производства пневматических тормозов для железнодорожных составов и сигнальных систем, Вестингауз предлагал цены ниже, чем у Эдисона, и часто строил новые электростанции дешевле их себестоимости.

Такая тактика шокировала Эдисона. Он родился и вырос на Среднем Западе, и его понимание бизнеса было очень простым: с клиента надо брать ровно столько, сколько нужно для создания оборудования плюс скромная прибыль. Намеренная потеря денег, чтобы «подрезать» конкурента, казалась ему несправедливой. В 1888 году, лишившись крупных контрактов на освещение Денвера и Миннеаполиса, один из менеджеров Эдисона, Фрэнсис Гастингс, решил оспорить безопасность электрических систем Вестингауза.

При установке первых систем переменного тока неизбежно происходили несчастные случаи: прокладчиков иногда убивало высокое напряжение в сети. Газеты быстро раздули скандал. Дабы ускорить процесс низвержения соперника, Гастингс заручился поддержкой Гарольда П. Брауна. Инженер-консультант, обманутый компанией Westinghouse Electric, жаждал мести. С одобрения менеджеров Эдисона Браун организовал демонстрации для журналистов в лаборатории Эдисона в Вест-Орандж, Нью-Джерси. На этих демонстрациях с помощью оборудования Westinghouse Electric убивали бродячих собак.

ФОТО: GRANGER, CORDON PRESS

Начиная с XVIII века, законодатели в Европе и Америке решили максимально гуманизировать смертные казни. После неудачных повешений в США в 1880-х реформаторы вынуждены были придумывать новые способы казни. В Буффало, штат Нью-Йорк, дантист Альфред П. Саутвик исследовал напряжение в электросети на бродячих собаках, после чего спроектировал систему для казни преступников. Удар током в голову приводил к потере сознания и смерти мозга. Второй удар наносил летальные повреждения жизненно важным органам. Электрический стул Саутвика впервые был применен для смертной казни в 1890 году.

Наиболее удачным рекламным трюком Брауна было применение переменного тока для смертной казни. В штате Нью-Йорк медики и реформаторы пришли к выводу, что казнь через повешение слишком негуманна, и стали искать новые способы умерщвления преступников.

Браун убедил их в гуманности казни с помощью переменного тока, для чего приобрел подержанный генератор Westinghouse Electric. Его установили в одной из тюрем и использовали для казни Уильяма Кеммлера, осужденного за убийство. Газетные публикации под заголовками «Кеммлер вестингаузирован» были проплаченной антирекламой.

Браун лично бросил вызов Джорджу Вестингаузу, предлагая ему опробовать, насколько силен будет удар током от генератора переменного тока по сравнению с генератором Эдисона. Тесла забеспокоился, что его друг Вестингауз и впрямь может на это согласиться. Во время лекции в 1891 году он решил продемонстрировать безопасность переменного тока, приняв удар напряжением в 250 000 вольт. Благодаря высокой частоте тока, сгенерированного новой катушкой Теслы, ток прошел по поверхности тела экспериментатора, не причинив никакого вреда внутренним органам.

В дополнение к медиакампании Эдисон сражался с Вестингаузом и на законодательном поле. Представители группы Эдисона усиленно лоббировали несколько законов, ограничивающих максимальное напряжение электрических систем до 300 вольт. Им почти удалось протащить эти законы в Вирджинии и Огайо.

Победа переменного тока

Пока Эдисон отстаивал свое изобретение на суде общественного мнения, Вестингауз и Тесла захватывали машиностроение и бизнес. Компания Вестингауза провела зрелищную презентацию своих систем, предоставив осветительную систему на десятки тысяч лампочек для Всемирной выставки в Чикаго в 1893 году. Красота ночной иллюминации впечатлила посетителей, убедив их в том, что будущее все же за переменным током.

Всемирная выставка, посвященная 400-летию открытия Америки, была проведена в Чикаго 1893 года. К берегам озера Мичиган стекалась публика со всей страны, чтобы полюбоваться новейшими изобретениями и трендами США. ФОТО: GRANGER, CORDON PRESS

Затем, параллельно с Всемирной выставкой, Тесла начал вести тайные переговоры со спонсорами строительства гигантской гидроэлектростанции на Ниагарском водопаде. Он убеждал их в том, что для передачи электроэнергии по всему штату Нью-Йорк лучше использовать переменный ток.

После интенсивной корреспонденции и личных встреч ему удалось уговорить банкиров. В то же время Тесла информировал Вестингауза о продвижении проекта на Ниагарском водопаде, чтобы тот мог поучаствовать в тендере на проектирование и оборудование электростанции. Признав заслуги Теслы в этом проекте, банкиры пригласили его произнести речь на банкете в честь открытия электростанции в 1896 году.

ОСВЕЩЕНИЕ БЕЛОГО ГОРОДА

Системы переменного тока Вестингауза и Теслы на Всемирной выставке в Чикаго. ФОТО: BROOKLYN MUSEUM OF ART, NY/BRIDGEMAN/ACI

Всемирная выставка 1893 года была проведена в Чикаго в честь 400-летия прибытия Христофора Колумба в Новый Свет. 200 павильонов собрали 27 миллионов посетителей, и там было что посмотреть: первое колесо обозрения, движущийся тротуар, кинофильмы на кинетоскопе Эдисона и многое другое.

Градостроители со всей Америки вдохновлялись сияющими белыми зданиями, построенными специально для выставки. После этого в городах по всей стране начали строить роскошные ратуши, бульвары и парки, достойные эпохи прогресса. Westinghouse Electric получила контракт на освещение выставки и спроектировала новые светильники для павильонов. Для их питания компания установила 24 генератора мощностью 500 лошадиных сил, трансформаторы и прочее оборудование для демонстрации разнообразия и производительности своих систем.

После постройки электростанции на Ниагарском водопаде основное направление в американской электропромышленности утвердилось окончательно. На протяжении большей части ХХ века частные коммунальные предприятия массово генерировали и передавали переменный ток предпринимателям и простым жителям.

Поскольку постройка новых электростанций обходилась недешево, а предельная прибыль от продажи электроэнергии была низкой, эти предприятия в целом стремились расширять свои сети. Они начали с городов и постепенно охватывали по несколько штатов сразу. При этом они по-прежнему опираются на технологию многофазного переменного тока, изобретенную Теслой и Вестингаузом.

Никола Тесла не был Богом, а Томас Эдисон не был дьяволом

«Требуется тысяча человек, чтобы изобрести телеграф, паровой двигатель, фонограф, фотографию, телефон или любую другую важную вещь. — и последний человек получает признание, и мы забываем о других. Он добавил свою маленькую лепту — это все, что он сделал. Эти наглядные уроки должны научить нас, что девяносто девять частей всего, что происходит от интеллекта, являются плагиатом, чистым и чистым. простой, и урок должен сделать нас скромными.Но ничто не может этого сделать »- Марк Твен

Овсянка — фантастический комикс, который я рекомендую вам взять за привычку читать. Однако даже самые великие люди могут сбиться с пути, и я с болью признаю, что The Oatmeal поступил так в отношении кого-то, кого я очень высоко ценю, а именно Николы Теслы. Увы, Овсянка стала жертвой идолопоклонства Теслы, сбив с толку его гений в божественности и, конечно же, создав слишком распространенное ныне повествование «Эдисон как главный злодей Теслы».

В этом комиксе немало ошибок и заблуждений как о Тесле, так и об Эдисоне. Но это ошибки, которые я видел раньше, и они часто повторяются, поэтому, я думаю, стоит потратить время на то, чтобы исправить некоторые из серьезных.

Тесла не изобрел переменный ток и не был главной силой в войне токов

Давайте начнем с первого, что говорится в комиксе: «Во времена, когда большая часть мира все еще освещалась свечой, электрическая система, известная как переменный ток, и по сей день питает каждый дом на планете.Кого мы должны благодарить за это изобретение, которое привело человечество ко второй промышленной революции? Никола Тесла »

Это просто неправильно. Переменный ток в принципе был разработан Майклом Фарадеем, а на практике — Ипполитом Пикси в начале 19 века. Практические устройства, использующие переменный ток в медицинском мире, были разработаны еще до рождения Tesla. Современники Теслы, работавшие на Джорджа Вестингауза, разработали практические методы распределения электроэнергии переменного тока от электростанций до того, как Тесла пришел работать в Вестингауз.Сам Тесла фактически изучал использование переменного тока в колледже — у него была степень инженера-электрика. (Для тех, кто интересуется, вот красивый и краткий график развития переменного тока.)

А теперь, помогла ли Tesla усовершенствовать AC? да. Сделал ли он какие-то ключевые инновации, которые сделали его еще более практичным? Абсолютно. В этом нет никаких сомнений. У него было интуитивное понимание электричества, чему я откровенно завидую. Он мог заставить его танцевать. Но был ли он незаменимым для внедрения переменного тока в качестве основного средства передачи электроэнергии? Почти наверняка нет.Джордж Вестингауз был человеком, который выиграл Войну течений в Соединенных Штатах, а в Европе AC выиграл войны почти до того, как они начались.

Большая часть того, что комикс Овсянка говорит об Эдисоне, правда. Да, Эдисон устраивал публичные демонстрации, на которых он казнил животных электрическим током, чтобы показать опасность переменного тока. Да, он изо всех сил боролся за свою веру в то, что постоянный ток — лучший способ передачи электричества. Он был не прав. Но вы знаете, что AC на опаснее постоянного тока, если с ним не обращаться должным образом.[ Примечание автора: Замечание об относительной опасности переменного и постоянного тока было неправильным с моей стороны. Спасибо моим комментаторам за указание на это.] Имейте это в виду и подумайте над этим: могло ли быть так, что Эдисон не был «болваном» в словах Овсянки? Возможно ли — только возможно — что Эдисон искренне считал, что кондиционер опасен, и честно не думал, что его следует использовать? Очень редко в Интернете такая возможность даже рассматривается. Ведь каждому повествованию нужен злодей, верно?

И еще одна скорая вещь.Стоит отметить, что переменный ток превосходит постоянный, когда речь идет о передаче электроэнергии (хотя новые технологии меняют это). Но, как справедливо отмечает Алекс Уоллер в своей критике этого комикса о Tesla:

Ирония в том, что компьютер, на котором автор нарисовал этот рисунок, работает от постоянного тока. Сотовый телефон автора также работает от источника постоянного тока. Фактически, если бы автор обошел их дом и посмотрел на все электронные устройства (кофеварка, микроволновая печь, часы, телевизор, ноутбук, стереосистема и т. Д.)), они заметили бы, что почти каждый из них требует преобразования переменного тока в постоянный, прежде чем его можно будет использовать. Это потому, что, хотя переменный ток действительно отлично подходит для передачи энергии на большие расстояния … это дерьмо для питания электроники. Так что, возможно, я мог бы предложить компромисс: если Тесла является отцом электрической эры, то Эдисон — отцом электронной эры.

Эдисон сделал лампочки практичные

Фирменное изобретение Эдисона — электрическая лампочка.Конечно, Эдисон на самом деле не изобретал лампу накаливания, на что сразу указывает комикс Овсянка, когда он говорит: «Эдисон не изобретал лампочку, он усовершенствовал идеи 22 других людей, которые первыми изобрели лампочку. до него. Эдисон просто придумал, как продать лампочку ».

Но то, что говорит Овсянка, ошибочно. Прежде всего, я бы сказал, что почти каждое изобретение в области техники или науки является улучшением того, что было раньше, например, усовершенствования Теслы для переменного тока.Вот что такое инновации. Это социальный процесс, происходящий в социальном контексте. Как однажды сказал Роберт Хайнлайн: «Когда придет время железных дорог, вы сможете заниматься железной дорогой — но не раньше». Другими словами, изобретения делаются в контексте научного и инженерного понимания. Люди двигаются вперед — одни быстрее других, — но, в конце концов, самый умный человек в мире не сможет изобрести лампочку, если для нее нет основы.

Во-вторых, комикс не оценивает , почему Эдисон смог продать лампочки.Он смог продать их, потому что с помощью лота работы как самого себя, так и ученых и инженеров, которые работали на него, он смог разработать электрическую лампочку, которая была практической . До Эдисона лампы накаливания были дорогими и имели тенденцию быстро перегорать. Эдисон исправил обе эти проблемы. И многие из тех, кто первым изобрел лампочку до Эдисона, например, Джозеф Свон, открыто восхищались решением Эдисона очень сложной инженерной проблемы.

Эдисон не помешал Тесле изобрести радар

Вероятно, одно из самых странных утверждений в комиксе «Овсянка» состоит в том, что Тесла разработал идею радара во время Первой мировой войны, но ему помешал злой Томас Эдисон.Это правда, что Томас Эдисон руководил Военно-морским консультативным советом во время Первой мировой войны, и это правда, что Тесла выдвинул идею использования радиоволн для отслеживания целей так, как это происходит с радаром. Верно и то, что военно-морской консалтинговый совет отклонил предложение Tesla.

И знаете что? Они были на все 100%, абсолютно правы. Ты знаешь почему? Потому что Tesla представила радар как средство отслеживания подводных лодок . Члены Военно-морского консультативного совета (я не могу найти документацию относительно непосредственного участия Эдисона) правильно отметили, что вода ослабляет радиоволны до такой степени, что они будут бесполезны для отслеживания подводных лодок.Так было во время Первой мировой войны, так и сегодня. Вот почему Консультационный совет военно-морского флота вместо этого выбрал гидролокатор. Так до сих пор отслеживаются подводные лодки. (Консультационный совет, однако, не продвинулся далеко. Британцы далеко впереди, разработав прототип гидролокатора в 1916 году.)

Так Tesla изобрела радар , как утверждает The Oatmeal ? Неа. Он высказал идею, но так и не разработал прототип. Тем не менее, большая часть его работы стала основой для исследований радаров в 1930-х годах, но между работой Теслы и окончательной разработкой радара было проделано много работы.Тесла указал путь, но пришлось вырыть длинную дорогу из джунглей.

Да, и еще одно примечание о Консультационном совете военно-морского флота. В отличие от Теслы, который в последние годы своей жизни представил странам «лучи смерти» и другое оружие, Эдисон решил работать с доской так, чтобы она работала только для разработки защитных технологий. Так было на протяжении всего его существования. Эдисон однажды заметил: «Я горжусь тем, что никогда не изобретал оружия для убийства».

Этого Тесла не может сказать.

Тесла не был первым, кто открыл рентгеновские лучи

В ходе исследования этой статьи я удивился, узнав, что Tesla на самом деле не открывала рентгеновские лучи. Я был под впечатлением от него. Он играл с ними до Вильгельма Рентгена, это правда. Но с ними экспериментировали и другие исследователи. Однако только после Рентгена некоторые из них знали, с чем имеют дело (например, работа Ивана Пулюя предшествовала работе Теслы, но он не осознавал, что работает с рентгеновскими лучами, пока Рентген не опубликовал свою работу) .Oatmeal также правильно отмечает, что Тесла действительно идентифицировал опасности рентгеновских лучей и не особо с ними экспериментировал.

Это затем приводит к одной из самых предосудительных с моральной точки зрения частей комикса Овсянки, где он принимает трагическую смерть помощника Эдисона Кларенса Далли и инвалидность Эдисона как предлог, чтобы снова избить Эдисона. Вот что говорит овсянка:

Это одни из самых анахроничных и снисходительных вещей, которые я когда-либо читал. Пожалуйста, читатели, верните часы к началу 1900-х годов.Люди действительно не понимали, как работает радиация и насколько они опасны. Когда дело дошло до экспериментов Эдисона с рентгеновскими лучами, «испытания на людях» были проведены Эдисоном над собой и его помощником, которые с готовностью согласились. Еще не понимая радиации, они оба приняли чрезмерные дозы и пострадали из-за этого. Такова судьба лота блестящих исследователей на заре радиации. Как, например, Мари и Пьер Кюри.

Более того, Эдисон преследовал смерть Далли до конца своих дней.Это его мучило. Пока Далли был жив и страдал, Эдисон держал его на зарплате и взял на себя все его расходы до дня его смерти. В начале 20-го века позвольте мне заверить вас, что удержание на заработной плате сотрудников, которые не могли работать, было , а не обычной практикой. Если бы он работал на большинство магнатов того времени, Далли, вероятно, закончил бы свои дни нищим на улице.

Наконец, и я не могу этого подчеркнуть, работа, проделанная Эдисоном и Далли, привела к разработке рентгеновских аппаратов в том виде, в каком мы их знаем сегодня.Рентген в кабинете вашего врача? Он по-прежнему использует базовый дизайн Эдисона. Тесла отказался от медицинских экспериментов с рентгеновскими лучами. Эдисон провел это исследование. И он за это пострадал. Но при этом Эдисон изобрел устройство, которое спасло жизни и облегчило страдания миллионов человек. И хотя сам Эдисон перестал использовать рентгеновские лучи из-за страха, он сказал это в то время, когда его спросили.

«Я не хотел больше ничего знать о рентгеновских лучах. В руках опытных операторов они являются ценным дополнением к хирургии, поскольку они обнаруживают скрытые от глаз объекты и делают, например, операцию по поводу аппендицита почти надежной.Но они опасны, смертельно опасны в руках неопытных или даже в руках человека, который постоянно использует их для экспериментов ».

Он был прав.

Тесла не был Богом

Полоса Oatmeal продолжается оттуда, к счастью уходя от бессмысленной критики Эдисона и обсуждения, вкратце, некоторых других достижений Tesla. Конечно, во время этой части он в основном уделяет внимание многим блестящим ученым и инженерам, которые разработали такие вещи, как беспроводная связь, дистанционное управление и другие вещи.Нельзя сказать, что Тесла не принимал участие во многих изобретениях — он его приложил! Но над ними работали и многие другие люди. Они основывались на первоначальной работе Теслы, усовершенствовали ее и разработали практические изобретения. Так работают наука и инженерия. Изобретатели, пришедшие после Теслы, основывались на трудах Теслы, точно так же, как Тесла опирался на работы Фарадея, Пиксии и многих других.

Комикс также делает, вероятно, ложное утверждение, что Тесла разработал практическое средство беспроводной передачи энергии.Он определенно утверждал, что может это сделать. Но нет никаких реальных доказательств того, что он это сделал. Тесла был так же склонен к самовозвеличиванию, как и все остальные. Особенно в его более поздние годы.

Более того, есть две вещи, которые Oatmeal не прокомментировал, и я думаю, что стоит упомянуть. Во-первых, Тесла утверждал, что наблюдал космические лучи, движущиеся быстрее скорости света. Они этого не делают. Он скептически относился к теории относительности, но его критика с тех пор оказалась необоснованной.

Позвольте мне закончить мыслью: Тесла не был игнорируемым богом-героем. Томас Эдисон не был дьяволом. Они оба были блестящими, волевыми людьми, которые помогли построить наш современный мир. Они оба совершали великие и ужасные поступки. Они оба были блестяще правы в одних вещах и столь же блестяще ошибались в других. У них были слабости, причуды, страсти, недопонимания и моменты удивления.

Другими словами, они оба были людьми.

Обновление: The Oatmeal опубликовал ответ на эту статью, которую вы можете прочитать здесь.Для протокола, я исправил опечатку use / used ДО того, как он опубликовал свой ответ, черт возьми!

Следуйте за мной в Twitter или Facebook. Прочтите мой блог Forbes здесь.

***

См. Также:

Девять опасностей, которым вас учили в школе

Китайские исследователи квантовой телепортации фотонов на расстояние более 60 миль

Европейские исследователи побили китайский рекорд квантовой телепортации

Пять личностей новаторов: кто вы?

Кто изобрел лампочку?

Хотя Томасу Эдисону обычно приписывают изобретение лампочки, знаменитый американский изобретатель был не единственным, кто внес вклад в разработку этой революционной технологии.Многие другие известные деятели также запомнились работой с электрическими батареями, лампами и созданием первых ламп накаливания.

Ранние исследования и разработки

История лампочки началась задолго до того, как Эдисон запатентовал первую коммерчески успешную лампочку в 1879 году. В 1800 году итальянский изобретатель Алессандро Вольта разработал первый практический метод производства электроэнергии — гальваническую батарею. Сделанная из чередующихся дисков из цинка и меди, перемежаемых слоями картона, пропитанного соленой водой, куча проводила электричество, когда медный провод был подключен с обоих концов.Светящийся медный провод Вольты, на самом деле предшественник современных батарей, также считается одним из самых ранних проявлений освещения лампами накаливания.

Вскоре после того, как Вольта представил свое открытие постоянного источника электричества Королевскому обществу в Лондоне, Хэмфри Дэви, английский химик и изобретатель, создал первую в мире электрическую лампу, соединив гальванические батареи с угольными электродами. Изобретение Дэви 1802 года было известно как электрическая дуговая лампа, названная в честь яркой дуги света, излучаемой между двумя угольными стержнями.

Хотя дуговая лампа Дэви, безусловно, была улучшением автономных свай Volta, она все же не была очень практичным источником освещения. Эта примитивная лампа быстро перегорела и была слишком яркой для использования дома или на работе. Но принципы, лежащие в основе дугового света Дэви, использовались на протяжении 1800-х годов при разработке многих других электрических ламп и лампочек.

В 1840 году британский ученый Уоррен де ла Рю разработал электрическую лампочку, в которой вместо меди использовалась спиральная платиновая нить накала, но высокая стоимость платины помешала лампочке получить коммерческий успех.А в 1848 году англичанин Уильям Стейт увеличил срок службы обычных дуговых ламп, разработав часовой механизм, который регулировал движение быстро разрушающихся угольных стержней ламп. Но стоимость батарей, используемых для питания ламп Стэйта, сдерживала коммерческие начинания изобретателя.

Джозеф Свон против Томаса Эдисона

В 1850 году английский химик Джозеф Суон занялся проблемой экономической эффективности предыдущих изобретателей и к 1860 году разработал электрическую лампочку, в которой вместо платиновых нитей использовались углеродные бумажные волокна.Свон получил патент в Соединенном Королевстве в 1878 году, а в феврале 1879 года он продемонстрировал рабочую лампу на лекции в Ньюкасле, Англия, по данным Смитсоновского института. Как и в более ранних версиях лампочки, нити Свана были помещены в вакуумную трубку, чтобы свести к минимуму воздействие кислорода и продлить срок их службы. К несчастью для Свана, вакуумные насосы его времени не были эффективными, как сейчас, и, хотя его прототип хорошо работал для демонстрации, на практике он был непрактичным.

Эдисон понял, что проблема с конструкцией Свана была в нити накала. Тонкая нить накала с высоким электрическим сопротивлением сделает лампу практичной, потому что ей потребуется небольшой ток, чтобы она светилась. Он продемонстрировал свою лампочку в декабре 1879 года. Свон включил усовершенствование в свои лампочки и основал компанию по производству электрического освещения в Англии. Эдисон подал в суд за нарушение патентных прав, но патент Суона был серьезным заявлением, по крайней мере, в Соединенном Королевстве, и два изобретателя в конечном итоге объединили усилия и сформировали Edison-Swan United, которая стала одним из крупнейших производителей лампочек в мире, согласно данным Музей неестественной тайны.

Лебедь был не единственным конкурентом, с которым столкнулся Эдисон. В 1874 году канадские изобретатели Генри Вудворд и Мэтью Эванс подали патент на электрическую лампу с угольными стержнями разного размера, помещенными между электродами в стеклянном цилиндре, заполненном азотом. Пара безуспешно пыталась коммерциализировать свои лампы, но в конце концов продала свой патент Эдисону в 1879 году.

За успехом лампочки Эдисона последовало создание Edison Electric Illuminating Company в Нью-Йорке в 1880 году.Компания была основана на финансовые взносы Дж. П. Моргана и других богатых инвесторов того времени. Компания построила первые электростанции, питающие электрическую систему, и недавно запатентованные лампы. Первая генерирующая станция была открыта в сентябре 1882 года на Перл-стрит в нижнем Манхэттене.

Другие изобретатели, такие как Уильям Сойер и Албон Мэн, не возражали, объединив свою компанию с компанией Эдисона и образовав General Electric, сообщает U.S. Министерство энергетики (DOE).

Первая практичная лампа накаливания

По данным Министерства энергетики, Эдисон преуспел и превзошел своих конкурентов в разработке практичной и недорогой лампочки. Эдисон и его команда исследователей в лаборатории Эдисона в Менло-Парке, штат Нью-Джерси, протестировали более 3000 конструкций лампочек в период с 1878 по 1880 годы. В ноябре 1879 года Эдисон подал патент на электрическую лампу с углеродной нитью. В патенте перечислено несколько материалов, которые могут быть использованы для нити, включая хлопок, лен и дерево.Следующий год Эдисон потратил на поиск идеальной нити для своей новой лампы, тестируя более 6000 растений, чтобы определить, какой материал будет гореть дольше всего.

Через несколько месяцев после выдачи патента 1879 года Эдисон и его команда обнаружили, что обугленная бамбуковая нить может гореть более 1200 часов. Бамбук использовался для изготовления нитей в лампах Эдисона, пока его не начали заменять более долговечными материалами в 1880-х и начале 1900-х годов. [По теме: Какая лампа горит дольше всего?]

В 1882 году Льюис Ховард Латимер, один из исследователей Эдисона, запатентовал более эффективный способ производства углеродных волокон.А в 1903 году Уиллис Р. Уитни изобрел обработку этих нитей, которая позволила им ярко гореть, не затемняя внутреннюю часть их стеклянных колб.

Вольфрамовые нити

Уильям Дэвид Кулидж, американский физик из General Electric, в 1910 году усовершенствовал метод производства вольфрамовых нитей компании. Вольфрам, который имеет самую высокую температуру плавления среди всех химических элементов, был известен Эдисону как превосходный материал для ламп накаливания, но оборудование, необходимое для производства сверхтонкой вольфрамовой проволоки, не было доступно в конце 19 века.Вольфрам по-прежнему является основным материалом, используемым в нити накаливания ламп накаливания.

Светодиодные фонари

Светоизлучающие диоды (светодиоды) теперь считаются будущим освещения из-за более низкого энергопотребления, меньшего ежемесячного ценника и более длительного срока службы по сравнению с традиционными лампами накаливания.

Ник Холоньяк, американский ученый из General Electric, случайно изобрел красный светодиод, пытаясь создать лазер в начале 1960-х годов. Как и в случае с другими изобретателями, принцип, согласно которому некоторые полупроводники светятся при приложении электрического тока, был известен с начала 1900-х годов, но Холоняк был первым, кто запатентовал его для использования в качестве осветительной арматуры.

По данным Министерства энергетики, в течение нескольких лет к смеси были добавлены желтые и зеленые светодиоды, которые использовались в нескольких приложениях, включая световые индикаторы, дисплеи калькуляторов и светофоры. Синий светодиод был создан в начале 1990-х годов Исаму Акасаки, Хироши Амано и Сюдзи Накамура, группой японских и американских ученых, за что они получили Нобелевскую премию по физике 2014 года. Синий светодиод позволил ученым создавать белые светодиодные лампы, покрывая диоды люминофором.

Сегодня выбор освещения расширился, и люди могут выбирать различные типы лампочек, в том числе компактные люминесцентные (CFL) лампы, работающие за счет нагрева газа, который производит ультрафиолетовый свет, и светодиодные лампы.

Несколько осветительных компаний раздвигают границы возможностей лампочек, в том числе Phillips и Stack. Phillips — одна из нескольких компаний, которые создали беспроводные лампочки, которыми можно управлять через приложение для смартфона. Phillips Hue использует светодиодную технологию, которую можно быстро включить, выключить или затемнить одним щелчком на экране смартфона, а также можно запрограммировать.Высококачественные лампочки Hue можно даже настроить на широкий диапазон цветов (всего около шестнадцати миллионов) и синхронизировать их с музыкой, фильмами и видеоиграми.

Stack, начатый инженерами Tesla и NASA, разработал интеллектуальную лампочку с использованием светодиодной технологии с широким набором функций. Он может автоматически определять окружающее освещение и регулировать его по мере необходимости, он выключается и включается с помощью датчика движения, когда кто-то входит в комнату, может использоваться в качестве оповещения о пробуждении и даже настраивает цвет в течение дня в соответствии с естественными циркадными циклами человека и узоры естественного света.Лампочки также имеют встроенную программу обучения, которая со временем адаптируется к потребностям жителей. И все эти функции можно программировать или контролировать с любого смартфона или планшета. Подсчитано, что интеллектуальные лампочки Stack могут потреблять примерно на шестьдесят процентов меньше энергии, чем обычные светодиодные лампы, и служат от двадцати до тридцати тысяч часов в зависимости от модели (по сравнению с двадцатью пятью и пятьдесят тысячами часов для обычных светодиодных лампочек. в соответствующих корпусах).

Эти лампочки совместимы (или скоро будут) со многими вариантами превращения всего дома в умный дом, включая использование с Amazon Alexa, Google Home и Apple HomeKit.

Следуйте за Элизабет Палермо в Twitter @techEpalermo, Facebook или Google+. Следите за LiveScience @livescience. Мы также в Facebook и Google+.

Рэйчел Росс внесла свой вклад в эту статью.

Дополнительные ресурсы

Evolution of the Light Bulb Part II

Томас Эдисон, возможно, не изобрел первую электрическую лампочку, но он, вероятно, изобрел современные научные амбиции.Он провел в патентном бюро и национальной газете столько же времени, сколько и в своей лаборатории, поэтому, когда вы думаете о лампочке, ее истинный изобретатель не приходит вам в голову. Лампочка появилась в результате почти столетия проб и ошибок ученых, которые не так вкладывались в свой общественный имидж, как Эдисон. У него даже было модное название для своей лаборатории: «Фабрика изобретений».

Как и у любого начинающего ученого-знаменитости, у него был профессиональный враг: Тесла.

Неудача Эдисона

Когда Эдисон начал свой грандиозный проект по установке электрического освещения в каждом богатом доме, Никола Тесла и Джордж Вестингауз только что изобрели мощность переменного тока.Свет Эдисона полагался на питание постоянного тока, так что его «эврика!» имел существенный недостаток: после стольких усилий, направленных на то, чтобы загнать рынок в угол, Тесла выхватил его прямо из-под носа, усовершенствовав способ доставки электроэнергии.

General Electric

Проекту

Эдисону нужен был баннер, поэтому он основал компанию, настолько знаменитую, что ее имя стало нарицательным более ста лет спустя: теперь она называется General Electric. С появлением электроэнергии переменного тока Эдисон был быстро уволен из собственного бизнеса, но не раньше, чем он начал войну с Теслой из-за нарушения его патентов.Эдисон был ни чем иным, как маркетинговым магнатом, поэтому он сделал свою долю оскорбления своего конкурирующего продукта, предавая гласности ужасные смерти, вызванные поражением электрическим током переменного тока. Даже этого было недостаточно, чтобы завоевать прибыльный рынок, созданный его лампочкой.

Тесла ушел с большей частью доходов и репутацией Волшебника электричества, но Эдисон изменил мир. Он, вероятно, предпочел бы оставаться на вершине мира, который он изменил, но изобретения требуют постоянных вложений в новые исследования и разработки.

Premier Lighting ценит историю света и вводит новшества в его дизайн для будущего. Свяжитесь с нашими специалистами сегодня, а завтра обновите свет в своем доме.

Томас Эдисон не изобретал лампочку

или нет

В современном мире сохранилось множество заблуждений, ставших современными «фактами», тогда как в действительности мифы и слухи возобладали. Извините, что лопнул ваш пузырь, но в этой еженедельной колонке Ripley’s проверяет эти заблуждения, переворачивая ваш мир с ног на голову, потому что вы не всегда можете… Верить в это!

Сегодня : Эдисон не изобрел первую лампочку.

Эдисон и лампочка

Хотя многие из вас могут читать это в кабинете или гостиной, или даже если вы сидите в классе, велика вероятность, что над вами висит одно из самых важных изобретений в истории: электрическая лампочка.

И хотя он позволяет вам продолжать читать, писать кроссворды или учиться, большинство из них не понимают, что у них совершенно неправильное представление о том, кто его изобрел, потому что это был , а не Томас Эдисон. Кто же, если не он, изобрел лампочку?

Кто изобрел лампочку?

«Ну, это сложный вопрос, — говорит Леонард ДеГрааф, архивист Национального исторического парка Томаса Эдисона в Нью-Джерси.«[Эдисон] не был первым изобретателем, который работал над этой проблемой».

На самом деле, к тому времени, когда Эдисон начал над этим работать, лампочка существовала уже давно, только в другой форме, объяснил ДеГрааф. Около 20 изобретателей со всего мира оформили на него различные патенты.

В 1806 году англичанин Хамфри Дэви показал свою электрическую лампу Королевскому обществу. Но свет быстро погас, и началась гонка, чтобы улучшить его. В 1841 году британский изобретатель Фредерик ДеМолейнс заключил свою горелку в стеклянную колбу.В 1845 году американец Дж. У. Старр получил патент на использование вакуума и угольной горелки.

Хамфри Дэви

Английский химик Джозеф Свон затем начал экспериментировать с горелками из различных материалов, но ни одна из них не работала в течение длительного времени.

Эдисон усовершенствовал существующую идею. Он был убежден, что сможет разработать первую практическую систему освещения лампами накаливания, и — с командой изобретателей и сотрудников — он намеревался сделать именно это.

«Глядя на свои личные работы, он изобрел другие компоненты — генераторы, системы распределения и организовал компании для их распространения», — сказал ДеГрааф.«Он решил разработать нить накала с« высоким сопротивлением », которая могла бы зажигать ее, не разрушая. Тогда вы могли бы использовать более дешевые материалы, что сделало бы создание ламп более экономичным ».

Колба выставлена ​​в 1879 году.

В конце концов, Эдисон нанял физика из Принстонского университета Фрэнсиса Аптона в свою команду в лаборатории в Менло-Парке. К концу 1880 года команда использовала длинные бамбуковые горелки, называемые нитями, которые могли гореть до 600 часов. Это поможет создать видение Эдисона освещения всего района или даже города.К 1882 году он создал компанию Edison Electrical Light Company, которая обеспечивала электричеством Нью-Йорк.

Итак, хотя Эдисон, возможно, и не изобрел лампочку, он усовершенствовал ее, а также систему для освещения больших площадей. Но почему мы относим устройство исключительно к нему? ДеГрааф говорит, что мы сначала должны узнать больше о том, кем был Эдисон как личность.

«В то время быстро появлялись изобретения», — говорит ДеГрааф. «Лампочка была этой знаковой проблемой. Даже сейчас лампочка означает наличие хорошей идеи.Эдисон очень хорошо представлял свои работы средствам массовой информации и налаживал отношения с репортерами. Он сделал хорошую копию, и он был доступен. Думаю, это помогло. Он понимал, что положительное освещение его работы в СМИ в конечном итоге пойдет на пользу его инвесторам. И он был шоуменом. Иногда он заявлял, что решил проблему раньше, чем это сделал на самом деле ».

Из-за его дурной славы и известности он, естественно, был связан с самой большой проблемой и изобретением того времени — электрическим светом.

Один из публичных световых дисплеев Эдисона.

«Я бы не смотрел на развитие технологий как на гонку», — говорит ДеГрааф. «Я бы посмотрел на это с точки зрения того, что происходило в мире в то время. Почему все эти изобретатели работают над этой проблемой? Почему общество побуждает их искать эти ответы? »

Ответ был очевиден: общество хотело видеть в темноте.

К 1920-м годам в обществе появился свет, и Эдисон был культовой фигурой в американском обществе.Во время 50 -й годовщины появления электрического света он был удостоен чести за свой труд.

«Я не из тех, кто умаляет вклад Эдисона», — говорит ДеГрааф. «Он начал создание систем электрического освещения, которые в конечном итоге объединились в Edison General Electric, а затем стали просто General Electric, и он сделал лампочку коммерчески возможным продуктом».

Важно отметить еще два вклада, сделанные за это время, — говорит ДеГрааф. Следует также помнить об Эдисоне за то, что он руководил тем, что впоследствии стало известно как командные промышленные исследования, в которых для решения проблемы использовались многие умы, а также за привлечение интереса инвесторов к финансированию его работы.

Это был бесспорный, что Эдисон был очень опередил свое время.

Он просто не изобрел лампочку.


Райан Кларк, участник Ripleys.com

ИССЛЕДУЙТЕ НЕЧЕТНОЕ В ЛИЧНОСТИ!

Откройте для себя сотни странных и необычных артефактов и познакомьтесь с невероятными интерактивами, посетив Оддиториум Рипли!

НАЙДИТЕ ДОСТОПРИМЕЧАТЕЛЬНОСТИ

Никола Тесла Печать плаката с лампочкой | Настенное искусство

Электричество и магнетизм

Об этом дизайне лампочки Николы Теслы

Мы стремимся предлагать самые оригинальные технологические разработки в Интернете.Дизайн этого плаката «Электричество и магнетизм» основан на изобретении Николы Тесла, чей патент на электрическую лампочку Никола Тесла был опубликован в 1891 году.

Уникальные плакаты об электричестве и магнетизме

Правильный плакат может превратить скучную стену в забавный способ самовыражения! Но найти подходящий плакат может быть непросто. Вот тут-то и появляется Patent Earth: у нас есть сотни дизайнов на выбор, и мы всегда добавляем новые! Продолжайте возвращаться, и вы обнаружите, что наш выбор настенного искусства Electricity & Magnetism постоянно растет.Мы тоже приветствуем предложения. Если вы знаете об отличном дизайне патента на технологию, который нам не хватает, дайте нам знать!

Напечатано специально для вас

Мы печатаем по запросу, что означает, что мы не печатаем плакат, пока вы его не закажете. Благодаря 7 размерам, 12 фонам и почти 1000 дизайнам возможности безграничны! Даже если вы выберете наш самый популярный дизайн «Электричество и магнетизм», велика вероятность, что вы единственный в мире, у кого есть такой точный принт! Patent Earth предлагает уникальное сочетание подготовленного дизайна и настраиваемости, которое позволяет вам получить уникальное искусство инженера по отличной цене!

Идеальный технологический декор

Украшать сложно, особенно если вы пытаетесь придерживаться темы.Сложно найти художественные принты, которые имеют как разнообразие, так и тематическую и визуальную согласованность. К счастью, Patent Earth предлагает все это! Благодаря нашему широкому выбору тематических изображений Технологий и вашему контролю над размерами и стилями фона вы можете выбрать любое количество рисунков Электричество и Магнетизм, чтобы создать уникальный набор тематических принтов на стенах. Вы можете оборудовать любую комнату, большую или маленькую!

Чистое удовлетворение

Есть несколько вещей, более приятных, чем установка последнего произведения искусства на место, завершающее комнату.Это тот момент, когда вы, наконец, можете перестать улучшать свое окружение и начать наслаждаться им. Украшаете ли вы себя или нуждаетесь в потрясающем подарке от лампочки Николы Тесла для дорогого друга, Patent Earth здесь, чтобы помочь вам достичь удовлетворения, найдя идеальное искусство для этого случая.

СВЯЗАННЫЕ ПРЕДМЕТЫ:

настенное искусство из лампочек, изобретения Тесла, декор классной комнаты, подарок инженера, дизайн лампочки, лабораторное искусство физики, подарок учителю естествознания, чертеж лампочки, подарок электрика, декор лампочки, старинная лампочка, художественная печать с лампочкой, патентная печать , плакат настенное искусство, декор для домашнего офиса

Кто на самом деле изобрел лампочку?

Эрик Литке | PolitiFact.com

Изначально эта статья была опубликована на сайте PolitiFact.com 4 сентября 2020 г.

Джо Байден: «Лампочку изобрел черный человек, а не белый парень по имени Эдисон».

Решение PolitiFact: В основном неверно

Вот почему: Гонка была ключевым вопросом при первой остановке кампании кандидата в президенты от Демократической партии Джо Байдена в Висконсине 3 сентября 2020 года.

Он говорил с Джейкобом Блейком, 29-летним специалистом. летний чернокожий мужчина, стрельба которого от руки полицейского Кеноша вызвала неделю протестов, порой жестоких.

И он участвовал в собрании общины в церкви Кеноша, где многие выступавшие говорили о проблемах и неравенстве, с которыми сталкиваются цветные люди.

Именно там Байден сделал одно особенно удивительное заявление, обвинив школы в неточном преподавании истории.

«Почему, ради Бога, мы не преподаем историю на уроках истории?» — сказал Байден в маске, наклоняясь к одному из участников, чтобы подчеркнуть свою точку зрения. «Лампочку изобрел негр, а не белый парень по имени Эдисон, хорошо?»

Байден продолжил: «Есть столько всего, знал ли кто-нибудь до того, что недавно произошло, что Блэк Уолл-стрит в Оклахоме сгорел дотла? Кто-нибудь знает эти вещи?… Мы их не учим.Мы должны сообщать людям факты ».

Томас Эдисон, конечно, широко известен как изобретатель лампочки — среди прочего.

Прав ли Байден, что кто-то другой должен получить признание?

происхождение лампы накаливания

Дорога к современной лампе накаливания была извилистой, и многие изобретатели вносили свой вклад в течение десятилетий.

Электроэнергия была разработана в начале 19 века, и изобретатели немедленно приступили к ее применению. к освещению.Согласно Британской энциклопедии, многие ранние попытки были сосредоточены на дуговом освещении, при котором яркий свет создается за счет искры между двумя точками.

Когда дуговое зажигание было слишком ярким и требовало слишком много энергии, что побудило повернуться к решению проблемы лампы накаливания.

Среди ключевых ранних разработок, согласно Britannica и другим источникам:

1801 — английский химик сэр Хэмфри Дэви продемонстрировал, что полоски, нагретые электричеством, будут светиться, но его нити прослужили недолго.

1841 г. — Фредерик де Молейнс из Англии получил первый патент на лампу накаливания, в которой между двумя платиновыми проволоками использовался порошковый уголь.

1865 — Разработан ртутный насос, позволяющий помещать светящуюся нить в вакуум, в результате чего она светится дольше.

1878 — Английский физик сэр Джозеф Уилсон Свон разработал лампу с углеродной нитью.

1879 — Томас Эдисон разработал лампу с углеродной нитью, заключенную в превосходный вакуум, чтобы продлить срок службы нити.

Свон и Эдисон оба подали заявки на патенты в 1880 году, что привело к судебному разбирательству, которое затянулось до тех пор, пока они не образовали совместную компанию в 1883 году.

«Эдисон всегда получал большую награду за изобретение лампочки из-за его разработки линий электропередач. и другое оборудование, необходимое для включения лампы накаливания в практическую систему освещения », — говорится в заявлении Britannica.

Профиль Эдисона в журнале Time Magazine в 1979 году резюмировал роль Эдисона следующим образом: «Прежде всего, Эдисон изобрел первый практичный электрический свет и систему распределения энергии, которая недорого поместила его в каждый дом.«

Следует отметить, что все изобретатели, упомянутые здесь, были белыми.

Итак, кого Байден имеет в виду? вместе с Эдисоном и Александром Грэмом Беллом (приписывают изобретение телефона).

Латимер действительно сыграл ключевую роль в распространении электрического освещения. Он был членом элитной исследовательской группы «Пионеры Эдисона» и написал первую книгу в Соединенные Штаты об электрическом освещении в 1890 году, согласно биографии на сайте Массачусетского технологического института.Латимер также руководил установкой электрического освещения на улицах и в зданиях Нью-Йорка, Филадельфии, Лондона и других городов, согласно статье New York Times 1988 года.

В первую очередь для рассматриваемого вопроса Латимер разработал нить накала, которая прослужила дольше, чем те, что были разработаны Эдисоном и другими, что сделало широкое использование электрического освещения более возможным. В сентябре 1881 года он получил патент на «новые полезные усовершенствования в электрических лампах накаливания».

Это было через полтора года после того, как Эдисон получил патент на электрическую лампу в январе 1880 года.

Общая точка зрения Байдена относительно Латимера и Блэка Уолл-стрит — Талса, ок. Район, где, как считается, в 1921 году в результате расовых беспорядков погибло до 300 человек, в Америке отсутствует образование в области истории чернокожих.

Но его конкретное заявление в отношении этой точки зрения выходит за рамки допустимого.

Наше постановление

Выступая в Кеноша, Байден сказал: «Лампочку изобрел черный человек, а не белый парень по имени Эдисон».

Черный человек, упомянутый здесь, Латимер, действительно сыграл важную роль в разработке и адаптации лампы накаливания.То же самое сделали многие другие изобретатели за десятилетия до патента Эдисона.

Эдисон определенно был не единственным изобретателем. Он опирался на работу других.

В то время как Байден может иметь точку зрения о необходимости лучше преподавать историю черных, он сильно преувеличивает в своем примере, сводя Эдисона к минимуму, полагаясь только на Латимера. Все доказательства, которые мы рассмотрели, показывают, что Латимер играл меньшую роль, чем Эдисон, а затем и в этом процессе.

Мы определяем «По большей части ложно» как утверждение, которое содержит элемент истины, но игнорирует важные факты, которые могли бы произвести иное впечатление.Это подходит сюда.

PolitiFact Texas — это партнерство Austin American-Statesman, Houston Chronicle и San Antonio Express-News, чтобы помочь вам найти правду в политике Техаса.

Источники

Канал Джо Байдена на YouTube, Джо Байден проводит собрание сообщества в Кеноша, штат Висконсин | Джо Байден на пост президента 2020 г., 3 сентября 2020 г.

Encyclopedia Britannica, Лампа накаливания, по состоянию на 4 сентября 2020 г.

Time.com, Business: The Quintessential Innovator, октябрь.22, 1979

MIT, Lewis H. Latimer, доступ 4 сентября 2020 г.

New York Times, Кампания в память об изобретателе, 6 августа 1988 г.

JV Nichols and LH Latimer, патент на электрическую лампу, сентябрь 13, 1881

Национальный архив, заявка на патент Томаса Эдисона на лампочку, 27 января 1880 г.

Плазменная лампа Николы Тесла

ЛАМПА ПЛАЗМЕННАЯ ТЕСЛА РФ
Похоже, что в конце концов Тесла был прав во многих вещах. Эдисон считал, что лампа накаливания была лучшим способом получения света, в то время как Тесла, изобретатель радио, выступал за использование радиочастотного лампы.

Эдисон не изобрел первую электрическую лампочку, а вместо этого изобрел первую коммерчески практичную лампу накаливания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *